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1 Background material

1.1 Prime vs irreducible elements

Definition 1.1.1. In a ring A, an element p ∈ A is prime if whenever p|ab, then p|a or p|b.

Definition 1.1.2. In an integral domain A, an element π ∈ A is irreducible if it nonzero,
not a unit, and if π = ab, then one of a, b is a unit. (That is, π cannot be written as the
product of two non-units.)

Proposition 1.1.3. In an integral domain, every prime element is irreducible. In a UFD,
every irreducible element is prime.

prime irreducibledomain

UFD

Proposition 1.1.4. The principal ideal generated by a prime element is a prime ideal.

1.2 Vandermonde determinants

Theorem 1.2.1. Let x1, . . . , xn be elements of a commutative ring A. Then

det(xj−1
i ) = det


1 x1 x2

1 x3
1 . . . xn−1

1

1 x2 x2
2 x3

2 . . . xn−1
2

...
...

...
...

. . .
...

1 xn x2
n x3

n . . . xn−1
n

 =
∏

1≤i<j≤n

(xj − xi)
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2 Definitions

2.1 Integral elements, integral closure, rings of integers

Definition 2.1.1. Let L/K be a field extension, and let α ∈ L be algebraic over K. The
minimal polynomial of α over K is the monic polynomial f ∈ K[x] of minimal degree so
that f(α) = 0. (Note that the minimal polynomial is always irreducible.)

Definition 2.1.2. A number field is a finite field extension of Q.

Definition 2.1.3. Let A ⊂ B be rings. An element b ∈ B is integral over A if there is a
monic polynomial f ∈ A[x] so that f(b) = 0. The ring B is integral over A if every element
of A is integral over A.

Definition 2.1.4. Let K be a number field. An element α ∈ K is a algebraic integer if
it is integral over Z. That is, α satisfies a monic polynomial in Z[x]. The set of algebraic
integers is dentoed OK , which is called the ring of integers of K.

Definition 2.1.5. Let A be a ring andM an A-module. M is faithful if aM = 0 =⇒ a = 0.
That is, the annihilator of M is trivial.

Definition 2.1.6. Let A be an integral domain contained in a field L. The ring of elements
of L that are integral over A is the integral closure of A in L. (This is most often used in
the case where L is the fraction field of L.)

Definition 2.1.7. An integral domain A is integrally closed if A is equal to its integral
closure in its field of fractions.

Definition 2.1.8. Let d be a square-free integer, and Q(
√
d)/Q a quadratic extension. If

d > 0, we call Q(
√
d) a real quadratic field. If d < 0, it is called an imaginary quadratic

field.

2.2 Norm, trace, and discriminant

Definition 2.2.1. Let A ⊂ B be rings so that B is a free A-module of rank n. Every β ∈ B
defines an A-linear map mβ : B → B, x 7→ βx, so mβ has a matrix with respect to a fixed
basis. The norm and trace of β are the respective determinant and trace of the matrix of
mβ.

NB
A(β) = detmβ TrBA(β) = Tr(mβ)

Definition 2.2.2. Let T : V → V be a linear transformation of a finite dimensional vector
space V . The characteristic polynomial of T , denoted cT (x), is det(xI − T ).

Definition 2.2.3. For a finite field extension L/K, and α ∈ L, the characteristic poly-
nomial of α, denoted cα(x), is the characteristic polynomial of the linear map mα : L→ L.

cα(x) = cmα(x)
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Definition 2.2.4. Let V be a finite dimesional K-vector space. A bilinear form on V is
a K-bilinear map φ : V × V → K. A bilinear form is symmetric if φ(v, u) = φ(u, v) for all
u, v ∈ V .

Definition 2.2.5. Let φ : V ×V → K be a bilinear form. Given a basis B = {e1, . . . , en} of
V over K, the matrix of φ with respect to the given basis is the matrix Aφ,B =

(
φ(ei, ej)

)
.

This is defined so that for u, v ∈ V , write them as column vectors [u]B, [v]B in terms of the
basis B, and then

φ(u, v) = [u]TBAφ,B[v]B

Definition 2.2.6. Let φ : V × V → K be a bilinear form, and fix a basis B = {e1, . . . , en}
of V . The discriminant of φ with respect to B is

Dφ(e1, . . . , en) = det(Aφ,B)

Definition 2.2.7. A bilinear form is nondegenerate if it has nonzero discriminant with
respect to some basis. (Since base change only affects the discriminant by a nonzero square,
this is equivalent to having nonzero discriminant with respect to every basis.)

Definition 2.2.8. Let L/K be a finite field extension. The trace form of L/K is the
symmetric bilinear form (α, β) 7→ TrLK(αβ). The discriminant of L/K is the discriminant
of the trace form.

D(L/K) = DTrLK
(e1, . . . , en) = det

(
TrLK(eiej)

)
(Note that the discriminant is only well defined up to multiplying by nonzero squares of K,
that is, D(L/K) ∈ K×/(K×)2.)

Definition 2.2.9. Let A ⊂ B be rings so that B is a free A-module of rank m. Given a basis
{β1, . . . , βm} of B over A, the discriminant of B/A, denoted disc(B/A), is the discriminant
of the trace form TrBA.

D(β1, . . . , βm) = det
(

TrBA(βiβj)
)

As in the case of fields, a base change induces multiplication by the square of a unit in A,
so the discriminant is well defined as an element of A×/(A×)2.

In the case where A = Z and B = OK is the ring of integers of a number field K, we
occasionally denote disc(OK/Z) by ∆K .

Example 2.2.10. In the case A = Z, and any ring B containing Z, the discriminant is a
well-defined element of Z, since the only units are ±1, which both square to 1.

Example 2.2.11. Consider a quadratic f(x) = x2 + bx+ c ∈ Q[x], and let α be a root of f ,

so we have the basis {1, α} of Q(α)/Q. Denote Tr
Q(α)
Q by Tr. Then

Tr(1) = 2 Tr(α) = −b Tr(α2) = Tr(−bα− c) = −bTr(α)− cTr(1) = b2 − 2c

so the matrix of the trace form with respect to the basis {1, α} is(
2 −b
−b b2 − 2c

)
which has determinant b2 − 4c, which coincides with the familiar discriminant formula for a
quadratic function.
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2.3 Dedekind domains, unique factorization

Definition 2.3.1. A discrete valuation ring (DVR) is a local PID which is not a field.

Remark 2.3.2. Let R be a DVR.

1. R is Noetherian.

2. Every prime ideal of R is maximal (Krull dimension is one).

3. R is integrally closed.

4. R is a Dedekind domain (this is just a summary of previous three properties).

5. Let m be the unique maximal ideal of R. The chain

m ⊃ m2 ⊃ m3 ⊃ . . .

contains every ideal of R.

6. R is a UFD.

7. R has a unique nonzero prime element π, which generates the maximal ideal m.

Definition 2.3.3. An integral domain R is a Dedekind domain if it is Noetherian, in-
tegrally closed, and has Krull dimension one. (Krull dimension one is equivalent to saying
that every prime ideal is maximal.)

Definition 2.3.4. Let A be a Dedekind domain, and let K = Frac(A). A fractional ideal
of A is a nonzero finitely generated A-submodule of K. The set of all fractional ideals of A
is denoted Id (A).

When we wish to emphasize that an ideal a ⊂ A is NOT a fractional ideal, we call it an
integral ideal.

Remark 2.3.5. Let A be a Dedekind domain. Since A is Noetherian, an A-submodule
a ⊂ Frac(A) is a fractional ideal if and only if there exists a nonzero element d ∈ A so that

da = {da : a ∈ A}

is an ideal of A.

Definition 2.3.6. Let a, b be fractional ideals of a Dedekind domain A. The product of
these is

ab =

{
n∑
i=1

aibi : ai ∈ a, bi ∈ b

}
which is a fractional ideal of A.

Remark 2.3.7. If A is a DVR with maximal ideal p = (π), then Id(A) ∼= Z via (πn) 7→ n.
(This is a group isomorphism.)
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Definition 2.3.8. Let A be a Dedekind domain, and let P (A) ⊂ Id(A) be the subgroup of
principal fractional ideals. The ideal class group of A is Cl (A) = Id(A)/P (A). If Cl(A)
is a finite group, its order is the class number of A.

IfK is a number field, we frequently abuse terminology by referring to the class group/number
of K, which really means the class group/number of OK .

Remark 2.3.9. In light of the fact that A is a PID if and only if the class number is one,
we may think of the class number/class group as an obstruction to the fact that a Dedekind
domain is a PID. That is, we might say that the size of the class group measures the distance
A is from being a PID.

Definition 2.3.10. Let K be a number field, and a ⊂ OK a nonzero ideal. Then norm of
a is

N(a) = |OK/a|
Remark 2.3.11. The use of the term “norm” is justified by a proposition which says that
the two notions agree (up to sign) for principal ideals, that is,

|N(x)| = |OK/(x)|
and the fact that the ideal norm is also multiplicative, N(ab) = N(a)N(b).

2.4 Factorization of ideals, ramification

Definition 2.4.1. Let A be a Dedekind domain, and let K = Frac(A). Let L/K be a finite
separable field extension, and let B be the integral closure of A in L. Let p ⊂ A be a prime
ideal, and factor pB into a product of prime ideals of B,

pB = Pe1
1 . . .Per

r

Then we may view A/p as a subring of B/Pi. Note that p is maximal, so A/p is a field.
We know that B is a finitely generated A-module, so B/Pi is a finite dimensional Ap vector
space. The residual field degree of Pi is

fi = dimA/pB/Pi

The ramification index of Pi is the exponent ei. If any ei > 1, then p ramifies in B. If
all ei = 1, then p is unramified. If ei = fi = 1 for all i, then p splits completely in B. If
pB is prime, then p is inert.

Definition 2.4.2. Let K,L be number fields with K ⊂ L, with respective rings of integers
OK ,OL. Let pK ⊂ OK be a prime ideal, and let pL ⊂ OL be a prime ideal with pL∩OK = pK .
This is equivalent to saying that pL appears in the (unique) factorization of the ideal pKOL.

pKOL = pe11 . . . peL . . . p
er
r

The power of pL in this factorization is defined to be e(pL/pK). Similarly, we define f(pL/pK)
to be

f(pL/pK) = dimOK/pK OL/pL
Definition 2.4.3. Let K ⊂ L be number fields, and let A ⊂ K be a Dedekind domain, and
let B be the integral closure of A in L. The discriminant ideal of B over A, denoted DB/A

is the ideal of A generated by discriminants of bases of L/K that are contained in B. Note
that DB/A is a nonzero integral ideal of A.
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2.5 Discrete valuations

Definition 2.5.1. Let K be a field. A discrete valuation on K is a nonzero map v :
K× → Z which is a group homomorphism, so v(ab) = v(a) + v(b), and also satisfying

v(a+ b) ≥ min(v(a), v(b))

If v is surjective, we say v is normalized. If v is not normalized, then the image is mZ for
some m ∈ Z, and we can replace v with the normalized valuation 1

m
v. Sometimes we extend

v to K by setting v(0) =∞.

Note: The next definition is more of a theorem than a definition, sorry.

Definition 2.5.2. Let v : K× → Z be a discrete valuation. The associated ring is

A = {a ∈ K|v(a) ≥ 0} ∪ {0}

which is a local PID with unique maximal ideal

m = {a ∈ K|v(a) > 0} ∪ {0}

If the image of v is mZ, and π ∈ K× with v(π) = m, then m = (π), and the element π is
called a uniformizer.

Definition 2.5.3. Let A be a Dedekind domain, and K = Frac(A), and let p ⊂ A be a
prime ideal. The associated discrete valuation is vp : K× → Z is defined by taking vp(c) to
be the power of p in the factorization of the fractional ideal (c).

Remark 2.5.4. If (A,m) is a local PID, and vm : Frac(A) → Z is the discrete valuation as
desribed above, then A is exactly the associated ring of vm, as in Defnition 2.5.2.

2.6 Eisenstein extensions

Definition 2.6.1. Let A be a Dedekind domain and let K = Frac(A). Let L/K be a finite
separable extension, and let B be the integral closure of A in L. Let p ⊂ A be a prime ideal,
and let vp : K → Z be the associated discrete valuation. A polynomial

f(x) = xm + am−1x
m−1 + . . .+ a1x+ a0 ∈ A[x]

is Eisenstein at p if vp(ai) > 0 for i = 1, . . . ,m− 1 and vp(a0) = 1.

2.7 Lattice theory

Definition 2.7.1. Let V be a finite dimensional real vector space. A lattice in V is a
subgroup of the form Λ = Ze1 + . . . + Zer with e1, . . . , er linearly independent. If r = n,
then Λ is a full lattice. Equivalently, Λ is a discrete subgroup of V .
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Definition 2.7.2. Let V be an n-dimensional real vector space, and let Λ = Ze1 + . . .+Zen
be a full lattice. The fundamental domain of Λ is

D =

{
n∑
i=1

aiei : 0 ≤ ai < 1

}

The quotient map V → V/Λ induces a bijection between D and V/Λ. That is, D is a set
of representatives for V/Λ. Another way to say this is that every point of V is congruent,
modulo Λ, to a point of D.

Definition 2.7.3. Let Λ be a full latice in Rn, with fundamental domain D. Let µ be
Lebesgue measure on Rn. The volume of Λ, denoted V (Λ), is µ(D). Note that by a key
lemma, this is independent of the choice of basis of Λ. Note that if Λ is spanned by x1, . . . , xn
and we set T to be the matrix whose columns are x1, . . . , xn written in terms of the standard
basis of Rn, then

V (Λ) = | detT |

Definition 2.7.4. A subset S ⊂ Rn is symmetric about the origin or centrally sym-
metric if x ∈ S =⇒ −x ∈ S.

Definition 2.7.5. Let K/Q be a number field with [K : Q] = n. Since Q has characteristic
zero, this is a separable extension, so there are n distinct embeddings σ1, . . . , σn : K ↪→ C
which restrict to the identity on Q. If σi(K) ⊂ R, we call σi a real embeddings. Otherwise,
we call it a complex embedding.

Note that complex embeddings come in conjugate pairs. By convention, we denote the
number of real embeddings by r1 and the number of pairs of complex embeddings by r2,
so that r1 + 2r2 = n. By convention, we order σ1, . . . , σn so that σ1, . . . , σr1 are the real
embeddings, and for 1 + r1 ≤ j ≤ r2, σj and σj+r2 are a conjugate pair. (That is, the first
r1 + r2 embeddings determine all of them.)

Definition 2.7.6. Let K/Q be a number field with [K : Q] = n, and with r1 real em-
beddings and r2 conjugate pairs of complex embeddings, ordered as above. The canonical
embedding σ : K ↪→ Rr1 × Cr2 ∼= Rn is

σ(x) =
(
σ1(x), . . . , σr1+r2(x)

)
K is totally real if r2 = 0. If r1 = 0, K is totally imaginary.

Definition 2.7.7. Let K be a number field. A finite extension L/K is unramified over
K if no prime ideal of OK ramifies in L.

2.8 Dirichlet unit theorem

Definition 2.8.1. Let K be a number field with ring of integers OK . While the phrase
“units of K” is mostly vacuous, since every nonzero element of K is invertible, we abuse
terminology and use “units of K” to refer to units of OK . We frequently denote this by UK .
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Definition 2.8.2. Let K be a field. The roots of unity in K form a multiplicative group,
which we denote by µ(K). If K is a number field, then µ(K) is a finite group, hence it is
cyclic (every finite subgroup of a multiplicative group of a field is cyclic). Note that if K has
a real embedding, then µ(K) = {±1}.
Definition 2.8.3. Let K be a number field. By Dirichlet’s unit theorem, UK ∼= µ(K) ×
Zr1+r2−1. A fundamental system of units for K is a set of elements u1, . . . , ur1+r2−1 which
is a basis for the free part of UK .

Definition 2.8.4. Let K be a number field with associated r1, r2. Set r = r1 + r2 − 1, and
let u1, . . . , ur be a fundamental system of units in UK . Define

`(uk) =
(

log |σ1ui|, . . . , log |σr1ui|, 2 log |σr1+1ui|, . . . , 2 log |σr2+1ui|
)

By considerations arising the proof of the Dirichlet unit theorem, `(u1), . . . , `(ur) generate a
full lattice in W ∼= Rr1+r2−1. The regulator of K, denoted Reg(K), is the determinant of
the matrix with ith row `(ui). Thus, up to sign, Reg(K) is the volume of the lattice spanned
by `(u1), . . . , `(ur).

Definition 2.8.5. A CM field is a totally imaginary quadratic extension of a totally real
number field. (CM stands for complex multiplication.)

2.9 S-units

Definition 2.9.1. Let K be a number field, and let S ⊂ specOK be a finite set of nonzero
prime ideals of OK . For a prime ideal p ⊂ OK , let vp be the associated discrete valuation.
The ring of S-integers is

OK(S) = {α ∈ K : vp(α) ≥ 0, ∀p ∈ (specOK) \ S}

The S-units of K are the units of OK(S), that is,

UK(S) = OK(S)× =
{
α ∈ K× : vp(α) = 0, ∀p ∈ (specOK) \ S

}
Example 2.9.2. Let K = Q, S = {2, 3}. The S-integers are

Z(S) =
{a
b
∈ Q : vp

(a
b

)
≥ 0, ∀p 6= 2, 3

)
=
{a
b
∈ Q : gcd(a, b) = 1, v5

(a
b

)
≥ 0, v7

(a
b

)
≥ 0, . . .

}
=
{a
b
∈ Q : gcd(a, b) = 1, b not divisible by 5, 7, 11, . . .

}
=
{a
b
∈ Q : gcd(a, b) = 1, b only divisible by 2, 3

}
=
{ a

2n3m
∈ Q : a, n,m ∈ Z

}
The S-units are

UK(S) =
{a
b
∈ Q : vp

(a
b

)
= 0, ∀p 6= 2, 3

}
=
{a
b
∈ Q : gcd(a, b) = 1, a, b only divisible by 2, 3

}
= {2n3m : n,m ∈ Z}
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2.10 Absolute values

Definition 2.10.1. Let K be a field. An absolute value on K is a function | · | : K → R≥0

such that

1. |x| = 0 if and only if x = 0

2. |xy| = |x||y|

3. |x+ y| ≤ |x|+ |y|
If | · | additionally satisfies the nonarchimedean triangle inequality |x+ y| ≤ max(|x|, |y|), it
is a nonarchimedean absolute value.

Example 2.10.2. The usual absolute value on Q or R or the norm on C are all absolute
values. They are denoted by | · |∞ to distinguish them.

Example 2.10.3. For any field K, there is the trivial absolute value,

|x| =

{
1 x 6= 0

0 x = 0

For example, on a finite field, the trivial absolute value is the only possible absolute value.

Remark 2.10.4. The property |xy| = |x||y| may be rephrased as saying that an absolute
value gives a group homomorphism K× → (R>0,×). Consequently, any root of unity in K
gets mapped to 1 ∈ R, since R has no torsion. As a consequence of this, if K is finite or
even if K is the algebraic closure of a finite field, then K has only the trivial absolute value.

Example 2.10.5. Fix a prime p ∈ Z, and fix α ∈ (0, 1). The p-adic absolute value on Q is
defined by

|x|p =
∣∣∣pna

b

∣∣∣
p

= αn

where n, a, b are uniquely determined by choosing a, b with gcd(a, b) = gcd(b, p) = 1 and
unique factorization of integers. The constant α can be anything in (0, 1) for this to be an
absolute value, though typically one uses the value α = p−1.

Alternately, this could be defined as follows: recognize that the primes in Z, along with
−1, are a generating set for Q×, and define | · |p on a generating set.

|x|p =


0 x = 0

1 x = q where q is a prime and q 6= p

p−1 x = p

Extending this definition by the multiplicative property gives the same as the previous
definition.

Definition 2.10.6. Two absolute values | · |1, | · |2 on K are equivalent if they induce the
same metric topology on K. Equivalently, |x|1 = |x|a2 for some constnat a ∈ R>0. Also
equivalently, they are equivalent if |x|1 < 1 ⇐⇒ |x|2 < 1 for all x ∈ K.

Definition 2.10.7. Let K be a field. An equivalence class of absolute values on K is called
a prime of K. An equivalence class of archimedean absolute values is called an infinite
prime, and nonarchimedean absolute values a finite prime.

11



2.11 Valuations, relationship with absolute values

Definition 2.11.1. A valuation on a field K is a nontrivial group homomorphism v :
K× → (R,+) satisfying

v(xy) = v(x) + v(y) v(x+ y) ≥ min(v(x), v(y))

(Sometimes it is convenient to formally extend a valuation by setting v(0) =∞.)

Remark 2.11.2. There is a bijective correspondence between nonarchimedean absolute
values on K and valuations on K via the isomorphisms

log : (R>0,×)→ (R,+) exp : (R,+)→ (R>0,+)

To go from a nonarchimedean absolute value to a valuation, compose with log. To go the
other way, compose with exp.

Definition 2.11.3. Valuations v, v′ on K are equivalent if v′ = cv for some c ∈ R. Equiv-
alently, they are equivalent if the corresponding absolute values are equivalent.

Definition 2.11.4. A valuation v : K× → R is discrete if the image is a discrete subgroup.
That is to say, the image is isomorphic to Z. If the image is precisely Z ⊂ R, then we say v
is normalized.

Example 2.11.5. Let k be any field, and let k(t) be the field of rational functions in one
variable. Let f ∈ k[t] be an irreducible polynomial. Associated to f , we have a normalized
discrete valuation

vf : k(t)× → Z vf

(
p(t)

q(t)

)
= vf

(
f(t)n

p̃(t)

q̃(t)

)
= n

where p̃, q̃ are uniquely determined since k[t] is a UFD. Geometrically speaking, vf is almost
like counting the order of zeros or poles of a rational function at f . If k is algebraically closed,
so that the only irreducible polynomials are linear, then vf is literally counting zeros/poles
at the single root of f . Another discrete valuation on k(t) is the less sophisticated

v∞ : k(t)× → Z v∞

(
p

q

)
= deg q − deg p

Another geometric interpretation: suppose k is algebraically closed, then k(t) is the function
field of one dimensional projective space P1

k, and the valuations above correspond to the
closed points of P1

k. We already described how vf corresponds to the point which is the sole
zero of f when f is linear. The valuation v∞ corresponds to the “point at infinity” of P1

k.

Definition 2.11.6. Let v : K× → R be a valuation. The associated valuation ring is

Ov =
{
x ∈ K× : v(x) ≥ 0

}
∪ {0} =

{
x ∈ K× : |x| ≤ 1

}
One may reasonably think of this as the “unit ball” inK, given the metric topology associated
to the absolute value associated to the valuation v. Note that Ov is in fact a subring of K,
and the units are

Uv =
{
x ∈ K× : v(x) = 0

}
=
{
x ∈ K× : |x| = 1

}
12



Think of Uv as the “unit circle” or “unit sphere” in K. It is somewhat dangerous to think
of this as the “boundary” of Ov, however, since topologies from nonarchimedean absolute
values do not behave at all like one expects, if one is used to the Hausdorff land of real
manifolds. The ring Ov is a local ring with maximal ideal

mv = OV \ Uv =
{
x ∈ K× : v(x) > 0

}
=
{
x ∈ K× : |x| < 1

}
This functions as the “open unit ball” in K. The residue field associated to v is OV /mv.

2.12 p-adic numbers

Remark 2.12.1. Let K be a field with absolute value and induced metric topology. This
comes along with associated notions of Cauchy sequences, convergence, series convergence,
and completeness. Generalize the usual definitions using an arbitrary absolute value, and
everything works nicely.

Definition 2.12.2. The completion of Q with respect to | · |p is denoted Qp and called the
field of p-adic numbers.

Definition 2.12.3. For each nonzero x ∈ Qp, there exists n ∈ Z such that |x|p = p−n. As
a consequence, the normalized discrete valuation vp : Q→ Z extends to Qp. Hence we may
define the p-adic integers

Zp = {x ∈ Qp : |x|p < 1} = {x ∈ Qp : vp(x) ≥ 0}

as the valuation ring of Qp. Note that Zp is a DVR with maximal ideal m = pZp. Also note

that Qp = Zp
[

1
p

]
.

Also note that the neighborhoods pnZp for n ∈ Z give a fundamental system of open
neighborhoods of zero in Qp. That is to say, translates of these neighborhoods give a basis
for the metric topology on Qp.

Remark 2.12.4. An alternate construction of Zp is as a profinite group. Let Gn = Z/pnZ,
and πnm : Z/pnZ → Z/pmZ be the natural quotient map. Ranging over n ∈ N, this is a
directed system (with the usual order on N), and it’s inverse limit is Zp.

Zp = lim←−Z/pnZ

Example 2.12.5. Another interesting profinite group is the following. Let Hn = Z/nZ,
and for m|n let πnm : Z/nZ → Z/mZ be the natural quotient map. The system (Hn, π

n
m) is

a directed system with indexing set N with partial order given by divisibility. The inverse
limit of this system is denote Ẑ. This is an example of a more general construction of the
profinite completion of a group.

2.13 Local fields

Definition 2.13.1. A topological space is locally compact if every point has a compact
neighborhood.

13



Definition 2.13.2. A topological space X is totally bounded if for every ε > 0, there is
a finite cover of X by ε-balls.

Definition 2.13.3. A local field is a field K with nontrivial absolute value which is locally
compact in its induced metric topology.

Example 2.13.4. R and C with the usual Euclidean absolute value/complex norm are local
fields.

Example 2.13.5. Qp with p-adic absolute value is a local field.

Example 2.13.6. Let q = pn be a prime power and let Fq be the (unique up to isomorphism)
field with q elements. The field of formal Laurent series Fq((t)) is a local field. The absolute
value here is associated with the discrete valuation v∞ defined by

v∞
(
akt

k + · · ·+ a0 + a1t+ · · ·
)

= k

The associated valuation ring is the ring of formal power series, OV = Fq[[t]].
Remark 2.13.7. Later, we will show that every local field is one of the previous examples
or a finite extension of one of them. That is, every local field is one of R,C,Qp,Fq((t)) for
some p or some q, or is a finite extension of Qp for some p. (There are no nontrivial finite
extension of C, and a finite extension of Fq((t)) is just some other field of the same type,
with a different q.)

2.14 p-adic integers

Remark 2.14.1. Let p be a prime. We have a filtration

Z×p ⊃ 1 + pZp ⊃ 1 + p2Zp ⊃ · · ·

Definition 2.14.2. The p-adic logarithm is defined by

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n

Note that by the lim sup convergence test, this converges for |x|p < 1 and diverges for
|x|p > 1. In particular, it gives a well defined function on Zp. It has the usual properties we
associate with log.

log(ab) = log a+ log b

Definition 2.14.3. The p-adic exponential is defined by

exp(x) =
∞∑
n=0

xn

n!

By some uninteresting algebra, the lim sup of coefficients for this is p
1
p−1 , so exp converges

for x satisfying

|x|p ≤ p
−1
p−1

If p 6= 2, exp converges for x ∈ pZp, and for p = 2, it converges for x ∈ 4Z2. When defined,
exp has the usual properties we associated with exp.

exp(a+ b) = exp a+ exp b exp log a = a log exp a = a

14



2.15 Ramified and unramified extensions

Definition 2.15.1. Let K be a complete nonarchimedean discretely valued field, and L/K
a finite extension. Let kK be the associated residue field of K and kL the associated residue
field of L. Note that OK ⊂ OL and mK ⊂ mL, hence

kK ↪→ kL

The residual degree is
f(L|K) = fLK = [kK : kL]

Definition 2.15.2. Let K be a complete nonarchimedean discretely valued field, and L/K
a finite extension with d = [L : K]. Let vK : K× → Z be a normalized discrete valuation.
Let vL : L× → R be the extension of vK , and the we know that

im vL ⊂
1

d
Z

so vL is also discrete. The ramification degree is

e(L|K) = eLK = eL/K = [vL(L×) : vK(K×)]

That is, if πK is a uniformizer for K and πL is a uniformizer for L, then

(πK) =
(
π
e(L|K)
L

)
as ideals of OL.

Definition 2.15.3. Let L,K, eL/K , fL/K be as above. If eL/K = 1, then L/K is unramified.
if fL/K = 1, then L/K is totally ramified.

Definition 2.15.4. Let p be a prime. A p-adic field is a finite extension of Qp.
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3 Theorems

3.1 Integral elements, integral closure, rings of integers

Proposition 3.1.1. Let K be a number field and let α ∈ K. Then α ∈ OK if and only if
the minimal polynomial of α over Q has integer coefficients.

Proposition 3.1.2. Let A ⊂ B be rings, and let b ∈ B. The following are equivalent.

1. b is integral over A.

2. A[b] is a finitely generated A-module.

3. A[b] is contained in a subring C where C is a finitely generated A-module.

4. There exists a faithful A[b]-module M which is finitely generated as an A-module.

Proposition 3.1.3. Let A ⊂ B be rings, and suppose b1, . . . , bn ∈ B are integral over A.
Then A[b1, . . . , bn] is a finitely generated A-module.

Proposition 3.1.4. Let A ⊂ B be rings. The set of elements of B that are integral over A
is a subring of B (containing A). (In particular, for a number field K, the algebraic integers
OK form a ring.)

Note: In the following proposition, the hypothesis that α is algebraic is redudant, since
L/K is finite (and hence algebraic), but we include it for emphasis.

Proposition 3.1.5. Let A be an integral domain and K = Frac(A) be its fraction field, and
let L/K be a finite field extension. If α ∈ L is algebraic over K, then there exists a nonzero
d ∈ A so that dα is integral over A.

In particular, if L is a number field, then L = Frac(OL) and L/OL is a torsion group.

Proof. As α is algebraic, we can write down a monic polynomial relation which is satisfies,
with coefficients from K.

αn + an−1α
n−1 + . . .+ a1α + a0 = 0

where ai ∈ K. Let d be a common denominator for the ai, so that dai ∈ A, and muliply the
equation by dn.

dnαn + . . .+ dna1α + dna0 = (dα)n + . . .+ dn−1a1(dα) + dna0 = 0

Thus dα is integral over A.
For the other remark, we apply this to A = Z, K = Q, and the proposition says that for

α ∈ L, there exists d ∈ Z so that dα ∈ OL, which is the condition for L/OL to be a torsion
group.

Proposition 3.1.6. A UFD is integrally closed. (In particular, Z is integrally closed.)

Proposition 3.1.7. Let A1 ⊂ A2 ⊂ A3 be rings with A2 integral over A1 and A3 integral
over A2. Then A3 is integral over A1.
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Proposition 3.1.8. Let A be an integral domain and let L = Frac(A). Let F/L be a finite
extension, and let B ⊂ L be the integral closure of A. Then B is integrally closed in L.

In particular, the ring of integers of a number field is integrally closed.

Proposition 3.1.9. Let A be an integral domain and let L = Frac(A). Let F/L be a finite
extension, and suppose A is integrally closed. Then α ∈ F is integral over A if and only if
the minimal polynomial of α over L has coefficients in A.

In particular, for a number field K/Q and α ∈ K, α ∈ OK if and only if the minimal
polynomial of α has coefficients in Z.

Proposition 3.1.10. Let K = Q(
√
d) where d is a square-free integer.

• If d ≡ 2, 3 mod 4, then OK = Z[
√
d].

• If d ≡ 1 mod 4, then OK = Z
[

1+
√
d

2

]
.

3.2 Norm, trace, and discriminant

Proposition 3.2.1 (Trace and norm are homomorphisms). Let A ⊂ B be rings so that B
is a free A-module of rank n. For a ∈ A, b, b′ ∈ B,

TrBA(b+ b′) = TrBA(b) + TrBA(b′)

TrBA(ab) = aTrBA(b)

TrBA(a) = na

NB
A(bb′) = NB

A(b) NB
A(b′)

NB
A(a) = an

Thus TrBA : B → A is an A-module homomorphism, and NB
A : B× → A× is a group homo-

morphism.

Proposition 3.2.2 (Trace and norm behave well with towers). Let K ⊂ E ⊂ L be a tower
of finite field extensions. Then for β ∈ L,

NL
K(β) = NE

K N
L
E(β) TrLK(β) = TrEK TrLE(β)

Proposition 3.2.3 (Norm and trace in the characteristic polynomial). Let T : V → V be a
linear transformation, with dimV = n. Then

cT (x) = xn − Tr(T )xn−1 + . . .+ (−1)n det(T )

Proposition 3.2.4. Let L/K be a finite field extension and let α ∈ L and let f ∈ K[x] be
the minimal polynomial of α. Then

cα(x) = f(x)[L:K(α)]

17



Proposition 3.2.5 (Norm and trace in terms of Galois conjugates). Let L/K be a finite
separable field extension and let α ∈ L. Let α1, . . . , αr be the roots of the minimal polynomial
of α (in some splitting field containing L). Let n = [L : K(α)]. Then

TrLK(α) = n

r∑
i=1

αi NL
K(α) =

(
r∏
i=1

αi

)n

Proposition 3.2.6. Let A be an integrally closed domain, and let K = Frac(A), and let
L/K be a finite extension. If β ∈ L is integral over A, then TrLK(β),NL

K(β) ∈ A.

Proposition 3.2.7 (Discriminant well defined up to squares). Let φ : V × V → K be a
bilinear form on a finite dimensional K-vector space V . If {e1, . . . , en} and {f1, . . . , fn} are
bases for V , then

Dφ(e1, . . . , en) = λ2Dφ(f1, . . . , fn)

for some nonzero λ ∈ K.

Proposition 3.2.8. Let φ : V ×V → K be a bilinear form on a finite dimensional K-vector
space V . The following are equivalent.

1. φ is nondegenerate.

2. φ has trivial left kernel (the left kernel is {v ∈ V : φ(v, u) = 0,∀u ∈ V }).

3. φ has trivial right kernel (analogous to left kernel).

4. The map V → V ∗, v 7→
(
x 7→ φ(v, x)

)
is injective.

5. The map V → V ∗, v 7→
(
x 7→ φ(x, v)

)
is injective.

6. The map V → V ∗, v 7→
(
x 7→ φ(v, x)

)
is an isomorphism.

7. The map V → V ∗, v 7→
(
x 7→ φ(x, v)

)
is an isomorphism.

Proposition 3.2.9. Let A ⊂ B be rings, so that B is a free A-module. If {β1, . . . , βn} and
{γ1, . . . , γn} are basis for B over A, and γj =

∑
i aijβi, then

D(β1, . . . , βn) = det(aij)
2D(γ1, . . . , γn)

Since (aij) is a change of basis matrix, its determinant is a unit in A, so this says that the
discriminant is well-defined up to multiplication by squares of units in A, hence there is an
equality of ideals (

D(β1, . . . , βn)
)

=
(
D(γ1, . . . , γn)

)
Proposition 3.2.10. Let L/K be a finite field extension. Then L/K is separable if and
only if the trace form is nondegenerate.
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Proposition 3.2.11 (Norm and trace in terms of Galois conjugates again). Let L/K be a
finite separable field extension, and set n = [L : K]. Fix a separable closure Lsep of L, and
let σ1, . . . , σn be the n distinct embeddings of L into Lsep that are the identity when restricted
to K. Then for β ∈ L,

TrLK(β) =
n∑
i=1

σi(β) NL
K(β) =

n∏
i=1

σi(β)

Proposition 3.2.12. Let L/K be a finite separable field extension and set n = [L : K]. Let
σ1, . . . , σn : L → Lsep be the distinct embeddings with σi|K = IdK. If {β1, . . . , βn} is a basis
of L/K, then

D(β1, . . . , βn) = det
(

(σi(βj)
)2

Proof. By definition of the discriminant,

D(β1, . . . , βn) = det
(

TrLK(βiβj)
)

Using Proposition 3.2.11,

TrLK(βiβj) =
n∑
k=1

σk(βiβj) =
n∑
k=1

σk(βi)σk(βj)

thus

det
(

TrLK(βiβj)
)

= det

(
n∑
k=1

σk(βi)σk(βj)

)
= det

(
σk(βi)

)
det
(
σk(βj)

)
= det

(
σk(βj)

)2

Proposition 3.2.13. Let L = K(α) so that L/K is finite separable of degree n, and let
f(x) ∈ K[x] be the minimal polynomial of α. Then the discriminant of L/K with respect to
the basis {1, α, α2, . . . , αn−1} is

D(1, α, . . . , αn−1) = (−1)
n(n−1)

2 NL
K(f ′(α))

Proof. Let σ1, . . . , σn be the distinct embeddings L→ Lsep which fix K, so that αi = σi(α)
are the distinct roots of f(x). We apply Proposition 3.2.12 with βj = αj−1 to get

D(1, α, . . . , αn−1) = det
(
σi(α

j−1)
)2

= det(αj−1
i )2
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This is a Vandermonde determinant (Proposition 1.2.1), so we may compute it as

det(αj−1
i )2 =

( ∏
1≤i<j≤n

(αi − αj)

)2

= (−1)
n(n−1)

2

∏
i 6=j

(αi − αj)

= (−1)
n(n−1)

2

n∏
i=1

(∏
j 6=i

(αi − αj)

)
= (−1)

n(n−1)
2

n∏
i=1

f ′(αi)

The last equality comes from the product rule.

(−1)
n(n−1)

2

n∏
i=1

f ′(αi) = (−1)
n(n−1)

2

n∏
i=1

σi(f
′(α)) = (−1)

n(n−1)
2 NL

K(f ′(α))

Remark 3.2.14. We should clarify the relationship between discriminants of number fields
and discriminants of polynomials, because they are very closely related. Let f ∈ Z[x] be
a monic irreducible polynomial of degree n, with roots α1, . . . , αn ∈ Qal. Let α = α1, and
consider the number field K = Q(α)/Q, with [K : Q] = n. Note that α ∈ OK , since f is
monic. In the process of the above proof, we showed that

D(1, α, . . . , αn−1) = (−1)
n(n−1)

2

∏
i 6=j

(αi − αj)

By definition, the discriminant of f is

disc(f) = a2n−2
n

∏
i<j

(αi − αj)2 =
∏
i 6=j

(αi − αj)

where an = 1 is the leading coefficient of f . By 3.2.19, we have

D(1, α, . . . , αn−1) =
[
OK : Z[α]

]2
disc(OK/Z)

Putting this together,

± disc(f) =
[
OK : Z[α]

]2
∆K

That is, the discriminant of a polynomial is “the same” as the discrimiant of the number
field determined by one of its roots, up to sign and multiplication by a square (the square is
measuring how “far off” the ring of integers OK is from being what it “should be”, namely
Z[α]).

One thing we can notice from this is that disc(f) is unaffected by a Q-linear change of
variables (a substitution x = ay+ b with a, b ∈ Q), since a Q-linear transformation of α ∈ K
does not affect the extension field K = Q(α) = Q(aα + b).

Proposition 3.2.15. Let A be an integrally closed domain. Let K = Frac(A) and L/K be
a finite separable extension of degree n. Let B be the integral closure of A in L. Then B is
a submodule of a free A-module of rank n.

In particular, if A is a PID, then B is a free A-module of rank n. Even more concretely,
if K/Q is a number field, then OK is a free Z-module of rank [K : Q].
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Proposition 3.2.16. Let p ∈ Z be a prime, and let ζ be a primitive pth root of unity. The
ring of integers of Q(ζ) is Z[ζ], and the discriminant of Z[ζ] over Z is ±pp−2.

Proposition 3.2.17. Let K/Q be a number field with ring of integers OK. Then OK is the
largest subring of K that is finitely generated as a Z-module.

Proposition 3.2.18. Let A ⊂ B be integral domains, so that B is a free A-module of rank
m, and suppose disc(B/A) 6= 0. Then elements γ1, . . . , γm form a basis of B over A if and
only if we have the following equality of ideals of A.(

D(γ1, . . . , γm)
)

=
(

disc(B/A)
)

Remark 3.2.19. In the previous proposition, with the caseA = Z, this says that {γ1, . . . , γm}
is a basis of B if and only if D(γ1, . . . , γm) = disc(B/Z). Thus if N =

⊕
i Zγi, then

D(γ1, . . . , γm) = [B : N ]2 disc(B/Z)

which gives the following useful criterion.

Proposition 3.2.20. Let K = Q(α) be a number field of degree n, with α ∈ OK. If
D(1, α, . . . , αn−1) is square-free, then OK = Z[α].

Proof. In the language of the previous remark 3.2.19, we have B = OK , γi = αi−1 and
N = Z[α]. Since D(1, α, . . . , αn−1) = [OK : Z[ζ]]2 disc(OK/Z) is square free, we get [OK :
Z[ζ]]2 = 1, which says that OK = Z[α].

3.3 Dedekind domains, unique factorization

Proposition 3.3.1. Let R be an integral domain. Then R is a DVR if and only if R is
Noetherian, integrally closed, and has a unique nonzero prime ideal.

Proposition 3.3.2. Let A be a Dedekind domain, and let K = Frac(A). Let L/K be a
finite separable extension, and let B be the integral closure of A in L. Then B is a Dedekind
domain.

In particular, in the case A = Z, K = Q, we have B = OL, so the ring of integers of a
number field is a Dedekind domain.

Proposition 3.3.3. Let A be an integral domain, and let S ⊂ A be a multiplicative subset.

1. If A is Noetherian, then S−1A is Noetherian.

2. If A is integrally closed, then S−1A is integrally closed.

3. If A is a Dedekind domain, then S−1A is a Dedekind domain.

Proposition 3.3.4. A Noetherian integral domain A is a Dedekind domain if and only if
for every nonzero prime ideal p ⊂ A, Ap is a DVR.
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Proposition 3.3.5 (Unique factorization of ideals in Dedekind domains). Let A be a Dedekind
domain. Then every proper nonzero ideal a ⊂ A can be written uniquely in the form

a = pe11 pe22 . . . penn

where pi are distinct prime ideals, and ri ∈ Z>0.

Proof. Uses the following three lemmas, and some additional work on top of that.

Lemma 3.3.6. Let A be a Noetherian ring. Then every nonzero ideal a ⊂ A contains a
product of prime ideals.

Lemma 3.3.7. Let A be a ring, and let a, b ⊂ A be relatively prime ideals (a + b = A).
Then for m,n ∈ Z≥0, an, bn are relatively prime.

Lemma 3.3.8. Let A be an integral domain, and p ⊂ A a maximal ideal. Set q = pAp.
Then the map

A/pm → Ap/q
m a+ pm 7→ a+ qm

is an isomorphism for all m ∈ N.

Proposition 3.3.9. Let A be a Dedekind domain, and let a, b ⊂ A be ideals. Then a ⊂ b if
and only if aAp ⊂ bAp for all nonzero prime ideals p ⊂ A.

Proof. Quick corollary of unique factorization of ideals, and the fact that Ap is a DVR.

Remark 3.3.10. The following proposition isn’t very useful, but it gives a nice charac-
terization of how Dedekind domains are not very far from being PIDs. Not every ideal is
generated by one element, but every ideal can be generated by two elements.

Proposition 3.3.11. Let A be a Dedekind domain, and let a ⊂ b ⊂ A be nonzero ideals of
A. Then a = b+ (a) for some a ∈ A. In particular, if a ⊂ A is a nonzero ideal and a ∈ a is
nonzero, there exists b ∈ a so that a = (a, b).

Proposition 3.3.12. Let A be a Dedekind domain. Then A is a PID if and only if it is a
UFD.

Proposition 3.3.13. Let A be a Dedekind domain. Then the set Id(A) a group with respect
to the product operation. More concretely, it is the free abelian group generated by the set of
nonzero prime ideals of A.

Proof. Check that any nonzero integral a ⊂ A is invertible in Id(A) with inverse

a−1 = {a ∈ K : aa ⊂ A}

The rest of the requirements essentially come from unique factorization.

Proposition 3.3.14. Let A be a Dedekind domain with |Cl(A)| = n (in particular, it is fi-
nite). Choose representative ideals a1, . . . , an ⊂ A. Let b ∈

⋂n
i=1 ai, and let S = {1, b, b2, . . .}.

Then S−1A is a PID.

Proposition 3.3.15. Let a, b be nonzero ideals of a Dedekind domain. Then N(ab) =
N(a)N(b).
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3.4 Factorization of primes, ramification

Remark 3.4.1. In the following proposition, dimA = 1 refers to Krull dimension, and
dimA = 1 is equivalent to saying that every prime ideal of A is maximal.

Lemma 3.4.2. Let A ⊂ B be rings, with dimA = 1, and let p ⊂ A, q ⊂ B be prime ideals.
Then

q ∩ A = p ⇐⇒ pB ⊂ q

Or in the notation of Atiyah-MacDonald Proposition 1.17,

qc = p ⇐⇒ pe ⊂ q

Proof. If qc = p, then pe = qec, and qec ⊂ q by Atiyah-MacDonald 1.17(i). For the converse,
suppose pe ⊂ q. Then p = pece ⊂ qce ⊂ q so p ⊂ qc = q ∩ A. Since dimA = 1, ever prime
ideal is maximal, so this forces qc = p or qc = A. The latter is impossible, since q ⊂ B is
proper, thus p = qc.

Proposition 3.4.3. Let A be a Dedekind domain and let K = Frac(A). Let L/K be a finite
separable extension, and let B be the integral closure of A in L. Let p ⊂ A be a prime ideal.
A prime ideal q ⊂ B appears in the factorization of pB if and only if q ∩ A = p.

Proof. We know that B is Dedekind, so we have a unique factorization into prime ideals of
B,

pB = Pe1
1 . . .Per

r

If q = Pi for some i, then pB ⊂ q, which by Lemma 3.4.2 implies that q∩A = p. Conversely,
if q ∩ A = p, then pB ⊂ q by Lemma 3.4.2. By Proposition 1.10(i) of Atiyah-MacDonald,

Pe1
1 . . .Per

r =
r⋂
i=1

Pei
i ⊂ q

and then by Proposition 1.11(i) of Atiyah-MacDonald, Pei
i ⊂ q for some i. Then we have an

inclusion of radical ideals
√

Pei
i ⊂
√
q, but by Exercise 1.13 of Atiyah-MacDonald, since Pi

and q are prime,
Pi =

√
Pei
i ⊂
√
q = q

Then since every prime ideal in B is maximal, the chain of proper nonzero ideals Pi ⊂ q
forces Pi = q.

Proposition 3.4.4 (Fundamental Relation). Let A be a Dedekind domain, and let K =
Frac(A). Let L/K be a finite separable field extension, and let B be the integral closure of
A in L. Let p ⊂ A be a prime ideal, and factor pB into a product of prime ideals of B,

pB = Pe1
1 . . .Per

r

Then
r∑
i=1

eifi = [L : K] = dimA/pB/pB
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Proposition 3.4.5. With the same hypotheses as Proposition 3.4.4, also suppose L/K is
Galois. Then Gal(L/K) acts transitively on the prime factors of pB. That is, for any pi,Pj

appearing in the factorization of pB, there exists σ ∈ Gal(L/K) so that σ(Pi) = Pj.

Proposition 3.4.6 (Fundamental Relation for Galois Extensions). With the same hypothe-
ses as Proposition 3.4.4, also suppose L/K is Galois. Then

e1 = . . . = er f1 = . . . = fr

Set e = e1, f = f1. Then
efr = [L : K]

Proposition 3.4.7. Let K ⊂ L be number fields, and let A ⊂ K be a Dedekind domain,
and let B be the integral closure of A in L. Let p ⊂ A be a prime ideal. Then p ramifies in
L if and only if p divides DB/A. In particular, only finitely many primes ramify.

Remark 3.4.8. As an example of Proposition 3.4.7, consider a quadratic extension Q(
√
d)/Q.

If d ≡ 2, 3 mod 4, then the discriminant is 4d, so the only primes that ramify are 2 and primes
dividing d.

Remark 3.4.9. As an example of Proposition 3.4.7, consider an odd prime p ∈ Z and the
cyclotomic extension Q(ζp)/Q. The discriminant is ±pp−2, so the only prime that ramifies
is pZ.

Proposition 3.4.10. Let A be a Dedekind domain, and K = Frac(A), and L/K a finite
separable extension, and let B be the integral closure of A in L. Suppose B = A[α], and let
f ∈ A[x] be the minimal polynomial of α over K. Let p ⊂ A be a prime ideal, and suppose
that (

f(x) =
r∏
i=1

gi(x)ei

)
mod p

with g1, . . . , gr distinct and irreducible mod p. Then pB factors as

pB =
r∏
i=1

(p, gi(α))ei

and
B/ (p, gi(α)) ∼= (A/p) [x]/gi

so fi = deg gi.

Proposition 3.4.11. Let A be a Dedekind domain, and K = Frac(A), and L/K a finite
separable extension, and let B be the integral closure of A in L. Let p ⊂ A be a prime ideal,
and suppose ∃θ ∈ L such that the integral closure of Ap in L is Ap[θ]. Let f ∈ Ap[x] be the
minimal polynomial of θ over K, and suppose(

f =
r∏
i=1

gi(x)ei

)
mod p

Then
pB = Pe1

1 . . .Per
r

where Pi = (p, gi(α)).
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Proof. See Janusz Chapter 1, Theorem 7.4.

Proposition 3.4.12. Let A be a Dedekind domain, and K = Frac(A), and L/K a finite
separable extension, and let B be the integral closure of A in L. Suppose ∃θ ∈ B such that
L = K(θ), and let

D = D(1, θ, . . . , θn−1) = disc(L/K)

Then for p ⊂ A prime so that D 6∈ p, we have S−1B = Ap[θ]. (In particular, the previous
theorem can be used to factor any such prime.)

Proof. See Janusz Chapter 1, Theorem 7.5.

Proposition 3.4.13. Let p ∈ Z be an odd prime. The following are equivalent.

1. p ≡ 1 mod 4.

2. p splits completely in Z[i].

3. p is a sum of two squares.

3.5 Quadratic extensions

In this section, we summarize all the various theory applied in the relatively concrete case
of quadratic number fields.

Proposition 3.5.1. Let K = Q(
√
d) with d a square-free integer. If d ≡ 2, 3 mod 4, then

1. OK = Z[
√
d]

2. disc(OK/Z) = 4d

3. Primes that ramify are 2 and divisors of d.

4. The minimal polynomial of
√
d is f(x) = x2 − d.

5. Let p ∈ Z be a prime. Then

pOK =

{
P2

1 p = 2 or p|d
P1P2 p 6= 2 and p - d

6. In the first case above, e = f = 1, r = 2. In the second case, e = 2, f = r = 1.

If d ≡ 1 mod 4, then

1. OK = Z
[

1+
√
d

2

]
2. disc(OK/Z) = d

3. Primes that ramify are divisors of d.

4. The minimal polynomial of
√
d is f(x) = x2 − x+ 1−d

2
.
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5. Let p ∈ Z be a prime. Then

pOK =

{
P2

1 p|d
P1P2 p - d

6. In the first case above, e = f = 1, r = 2. In the second case, e = 2, f = r = 1.

3.6 Lagrange’s theorem on sum of four squares

Definition 3.6.1. Let A be a commutative ring. The quaternion algebra over A is the
four-dimensional A-algebra H(A) with basis 1, i, j, ij and relations

i2 = j2 = −1 ij = −ji
Note that H(A) is an associative algebra. For q = a+ bi+ cj + dij ∈ H(A), the conjugate
of q is

q = a− bi− cj − dij
The reduced norm of q is N(z) = qq.

Lemma 3.6.2 (Properties of conjugation). Conjugation is an involution of H(A). That is,
it is an anti-homomorphism of order 2. Explicitly, this means

z + z′ = z + z′ zz′ = zz′ z = z

Lemma 3.6.3 (Properties of norm). Norm has the following properties.

1. N(a+ bi+ cj + dij) = a2 + b2 + c2 + d2

2. For q, z ∈ H(A), N(qz) = N(q)N(z).

3. z ∈ H(A) is a unit if and only if N(z) is a unit in A.

Definition 3.6.4. The Hurwitz quaternions are

H =

{
a+ bi+ cj + dij|a, b, cd ∈ Z or a, b, c, d ∈ 1

2
Z
}

Note that H(Z) ⊂ H ⊂ H(Q).

Lemma 3.6.5. The Hurwitz quaternions have the following properties, as a subalgebra of
H(Q).

1. H is closed under conjugation.

2. For z ∈ H, z + z ∈ Z and N(z) ∈ Z.

3. z ∈ H is a unit if and only if N(z) = 1.

4. Every left or right ideal of H is principal.

Lemma 3.6.6. Let Fq be the finite field with q elements. Any α ∈ Fq can be written as a
sum of two squares in Fq.
Theorem 3.6.7 (Lagrange). Every natural number is a sum of four squares.

Proof. Covered in class. Note that the proof does not really utilize techniques and concepts
developed in this class.
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3.7 Discrete valuations

Proposition 3.7.1. Let v : K× → Z be a discrete valuation.

1. If c ∈ K× is an element of finite order, then v(c) = 0. Consequently, v(a) = v(−a) for
all a ∈ K×.

2. If a, b ∈ K× with v(a) > v(b), then v(a+ b) = v(b).

3. If a1, . . . , an ∈ K× with a1 + . . . + an = 0, then the minimal value of v(ai) is attained
for at least two indices i.

Proposition 3.7.2. Let A be a Dedekind domain, and let p1, . . . , pn ⊂ A be nonzero dis-
tinct prime ideals. Let vp1 , . . . , vpn be the corresponding discrete valuations on Frac(A). Let
x1, . . . , xn ∈ A. Then for every integer m, there exists x ∈ A so that vpi(x − xi) > n for
1 ≤ i ≤ n.

Proof. This is just a restatement of the Chinese Remainder Theorem in terms of discrete
valuations.

3.8 Eisenstein extensions

We generalize Eisenstein’s criterion to a more general setting. First, recall the original
statement.

Proposition 3.8.1 (Eisenstein’s criterion, original version). Let p be a prime. If

f(x) = xm + am−1x
m−1 + . . .+ a1x+ a0 ∈ Z[x]

satisifes p|ai for i = 0, . . . ,m− 1 and p2 - a0, then f is irreducible in Z[x]

Proposition 3.8.2 (Generalized Eisenstein’s criterion). Let A be a Dedekind domain, and
let K = Frac(A). Let f ∈ A[x] be Eisenstein at a prime ideal p. Then f ∈ K[x] is irreducible,
and if α ∈ Ksep is a root of f , then p is totally ramified in K(α), and vp(α) = 1.

Furthermore, if L/K is a separable extension, and B is the integral closure of A in L,
then pB factors into prime ideals as

pB = (p, α)deg f

Note that the original verion is the case where A = Z.

3.9 Finiteness of the class group, lattice theory

Lemma 3.9.1. Let K be a number field, and let n ∈ Z≥1. There are only finitely many
ideals in OK with norm n.

Proof. Let a ⊂ OK , with N(a) = |OK/a| = n. Then n ∈ Z ⊂ OK , so viewing the class of n
as element of |OK/a|, we have n = 0, since it is a group of order n. Thus n ∈ a, so (n) ⊂ a.
Thus a corresponds to an ideal of the finite ring |OK/(n)|. Since this ring is finite, it has
only finitely many ideals, so there can be only finitely many such a.
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Proposition 3.9.2. Let V be a finite dimensional real vector space, and Λ ⊂ V be a sub-
group. The following are equivalent.

1. Λ is a lattice.

2. Λ is a discrete subgroup.

3. There is an open subset U ⊂ V such that U ∩ Λ = {0}.

4. Each compact subset of V intersects Λ in a finite set.

5. Each bounded subset of V intersects Λ in a finite set.

Proposition 3.9.3. Let Λ ⊂ Rn be a full lattice, and S ⊂ Rn be a measureable subset such
that µ(S) > V (Λ). Then there exist distinct x, y ∈ S so that x− y ∈ Λ.

Theorem 3.9.4 (Minkowski Convex Body Theorem). Let Λ ⊂ Rn be a full lattice, and
S ⊂ Rn be a measurable subset, which is convex and symmetric about the origin. If

µ(S) > 2nV (Λ)

or
µ(S) ≥ 2nV (Λ) and S is compact

then S ∩ (Λ \ {0}) 6= ∅.

Proposition 3.9.5. Let r1, r2 ∈ N, n = n1 + 2r2. For t ∈ R≥0, set

Bt =

{(
y1, . . . , yr1 , z1, . . . , zr2

)
∈ Rr1 × Cr2

∣∣∣∣∣
n∑
i=1

|yi|+ 2
n∑
j=1

|zj| ≤ t

}
Let µ denote Lebesgue measure on Rn ∼= Rr1 × Cr2. Then

µ(Bt) = 2r1
(π

2

)r2 tn
n!

Proof. See Milne [?] Lemma 4.22, or Janusz Chapter 1, Proposition 12.4. Professor Rap-
inchuk noted that in the case r1 = r2 = 1, we can actually visualize Bt as two cones glued
at their circular ends, and in this case the measure computation is immediate.

Proposition 3.9.6. Let K be a number field with canonical embeddings σ. If M ⊂ K is
a free Z-module of rank n = [K : Q] with basis {x1, . . . , xn}, then σ(M) is a lattice in Rn

whose volume is
V (σ(M)) = 2−r2| det(σj(xi))|

Recall that ∆K = disc(OK/Z).

Proposition 3.9.7. Let K/Q be a number field with canonical embedding σ, and let n =
[K : Q]. Let a ⊂ OK be a nonzero ideal. Then σ(OK) and σ(a) are full lattices in Rn, with
volumes

V (σ(OK)) = 2−r2|∆K |1/2

V (σ(a)) = 2−r2|∆K |1/2N(a)
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Proposition 3.9.8. Let K/Q be a number field, and let a ⊂ OK be a nonzero ideal. Then
there exists a nonzero x ∈ a so that

|N(x)| ≤
(

4

π

)r2 n!

nn
|∆K |1/2N(a)

Lemma 3.9.9 (Arithmetic mean-geometric mean inequality). If a1, . . . , an ∈ R≥0, then the
geometric mean is less than or equal to the arithmetic mean. Symbolically,(

n∏
i=1

ai

)1/n

≤ 1

n

n∑
i=1

ai

Proposition 3.9.10 (Hermite-Minkowski bound). Let K be a number field. Every class in
Cl(OK) contains an integral ideal b satisfying

N(b) ≤
(

4

π

)r2 n!

nn

√
|∆K |

Theorem 3.9.11. Let K be a number field. The class group Cl(OK) is finite.

Theorem 3.9.12. Let K be a number field, with K 6= Q. The discriminant ∆K is not ±1.

Theorem 3.9.13 (Hermite-Minkowski). There does not exist a number field K which is
unramified over Q. (Note that this fails if we replace Q with another number field.)

Corollary 3.9.14. There does not exist an irreducible monic polynomial f(x) ∈ Z[x] with
deg f > 1 so that the discriminant of f is ±1.

Theorem 3.9.15 (Hermite-Minkowski). There are only finitely many number fields with a
given discriminant.

3.10 Class groups of quadratic number fields

Remark 3.10.1. Let K be any field, and let K(α) be a Galois extension with primitive
element α. Then for σ ∈ Gal(K(α)/K), σα is also a primitive element, that is, K(α) =
K(σα). Viewing σ as an automorphism K(α) → K(α) note that the image is also K(σα),
so it must be that they are equal.

Proposition 3.10.2. If K/Q is Galois, then K is either totally real or totally imaginary.

Proof. Let K be the splitting field of an irreducible polynomial f(x) ∈ Q[x]. If f has no real
roots, then K is totally imaginary. By the previous remark, if any root of f is real, then it
is a primitive element, so all other roots can be written in terms of it and elements of Q, so
all roots are real, and K is totally real.

Let K = Q(
√
d) be a quadratic number field with d square-free. Let r1, r2 be the number of

real embeddings and complex embeddings, respectively. Since every quadratic extension is
Galois, by 4.3.3 K/Q is totally real or totally imaginary, so there are two possibilities:
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1. r1 = 2, r2 = 0. In this case the Minkowski bound is N(a) ≤ 1

2

√
|∆K |

2. r1 = 0, r2 = 1. In this case the Minkowski bound is N(a) ≤ 2

π

√
|∆K |

If the Minkowski bound is < 2, then Cl(K) is trivial, since nontrivial elements of Id(OK)
have norm at least 2. Thus the following result.

Proposition 3.10.3. Let K be a quadratic number field, with r1 real embeddings and r2

complex embeddings.

1. If r1 = 2, r2 = 0 and |∆K | < 16, then Cl(K) is trivial.

2. If r1 = 0, r2 = 1 and |∆K | < π2, then Cl(K) is trivial.

Recall that if K = Q(
√
d) with d a square-free integer, then

∆K =

{
4d d ≡ 2, 3 mod 4

d d ≡ 1 mod 4

Using this, we can give refine the previous result to 4 separate cases.

Proposition 3.10.4. Let K = Q(
√
d) be a quadratic number field, with r1 real embeddings

and r2 complex embeddings.

1. If d ≡ 2, 3 mod 4 and r1 = 2, r2 = 0 and |d| < 4, then Cl(K) is trivial.

2. If d ≡ 1 mod 4 and r1 = 2, r2 = 0 and |d| < 16, then Cl(K) is trivial.

3. If d ≡ 2, 3 mod 4 and r1 = 0, r2 = 1 and |d| < π2

4
, then Cl(K) is trivial.

4. If d ≡ 1 mod 4 and r1 = 0, r2 = 1 and |d| < π2, then Cl(K) is trivial.

Note that π2 ≈ 9.8 and π2

4
≈ 2.4. Concrete examples include the following.

1. d = −1, K = Q(i), d ≡ 3 mod 4, r1 = 0, r2 = 1,∆K = −4. Since |d| < π2, the class
group is trivial.

2. d = 3, K = Q(
√

3), d ≡ 3 mod 4, r1 = 2, r2 = 0,∆K = 12. Since |3 ∗ 4| < 16, the class
group is trivial.

Example 3.10.5. In the case d = −5, K = Q(
√
−5),OK = Z[

√
−5],∆K = −20, the

Minkowski bound is not sufficient to conclude using the methods above that the class group
is trivial. In fact, we can exhibit by example that Z[

√
−5] is not a UFD, and we know that

OK is a UFD if and only if the class group is trivial, so Cl(K) must be nontrivial. However,
the Minkowski bound is still useful for computing Cl(K), see the following proposition.

Proposition 3.10.6. Let K = Q(
√
−5). Then Cl(K) is cyclic of order 2, generated by the

class of the ideal (2,
√
−5 + 1).
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Proof. The Minkowski bound is

N(a) ≤ 2

π

√
20 ≈ 2.847 < 3

Thus Cl(K) is generated by prime ideals of OK = Z[
√
−5] of norm at most 2. The only

prime of norm 1 the the whole ring, so Cl(K) is generated by prime ideals of norm 2. Let
p ⊂ Z[

√
−5] be a prime ideal of norm 2. Then p|2OK , so we want to factor 2OK . By

Kummer’s theorem, this is controlled by the factorization of the minimal polynomial of√
−5 (x2 + 5) reduced modulo 2.

x2 + 5 ≡ (x+ 1)2 mod 2 =⇒ 2OK = (2,
√
−5 + 1)2

Let p2 = (2,
√
−5 + 1)2. The fundamental relation gives 2 = ef . By the above factorization,

e = 2, so f = 1, that is,

dimF2 OK/p2 = 1 =⇒ N(p2) = |OK/p2| = 2

Recall that Cl(K) is generated by primes of norm 2, and we just showed that a prime of
norm 2 divides 2OK , and by unique factorization it must be p2. Thus Cl(K) is generated by
p2. The relation p=

2 2OK implies that p2 has order dividing 2, since principal ideals are trivial
in Cl(K). Since we know that Cl(K) is a nontrivial group, the generator can’t be trivial, so
p2 is nontrivial, and hence has order exactly 2. Thus Cl(K) ∼= Z/2Z〈p2〉.

Alternatively, one can argue directly that p2 is nontrivial in Cl(K) by showing that it is
not a principal ideal. Suppose p2 = (α), with α = m+ n

√
−5. Then

N(p2) = 2 = N(α) = m2 + 5n2

but this clearly has no solutions for m,n ∈ Z, so we conclude that p2 is not principal.

Proposition 3.10.7. Let K = Q(
√

82). Then Cl(K) is cyclic of order 4.

Proof. Similar to previous computation of the class group for Q(
√
−5), but more compli-

cated. We know that OK = Z[
√

82] and ∆K = 23 · 41, so the Minkowski bound gives
N(a) ≤ 9, so Cl(K) is generated by primes of norm ≤ 9. Consider the factorizations of
x2 + 82 modulo the primes 2, 3, 5, 7.

The primes 5, 7 are inert (they remain prime in OK), but 2OK is a square and 3OK splits
as a product of two distinct primes. Thus Cl(K) is generated by the three primes dividing
2Ok, 3OK . By working with these even further one can conclude that Cl(K) is generated by
an element of order dividing 4. Then using the Dirichlet Unit Theorem (a later result), one
can show that the element has order 4.

3.11 A cubic extension with trivial class group

Proposition 3.11.1. Let f(x) = x3 + x2 − 2x− 1 ∈ Q[x], and let α be a root of f , and let
K = Q(α). Then

1. The discriminant of f is 49.
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2. All three roots of f (in C) are real, that is, r1 = 3, r2 = 0 for K = Q(α).

3. OK = Z[α].

4. Cl(K) is trivial.

Proof. (1) Recall that a Q-linear change of variables does not affect the discriminant, and
make the substitution y = x+ 1

3
. Then

f(x) = f

(
y − 1

3

)
= y3 − 7

3
y − 7

27

Using the formula from 4.1.2, the discriminant of this polynomial in y is 49.
(2) Just graph the function. Alternately, note that

f(−3) < 0 f(−1) > 0 f(0) = −1 < 0 f(2) > 0

so there are three sign changes.
(3) Let A = Z[α]. It is clear that A ⊂ OK . A has the Z-basis 1, α, α2, with discriminant

disc(A/Z) = disc(f) = 49

We know that
49 = disc(A/Z) = disc(OK/Z)[OK : A]2

If A 6= OK , then [OK : A] = 7 by the above relation, so disc(OK/Z) = 1. Then by the
Hermite-Minkowski inequality unless K = Q, which we know is false, so A = OK .

(4) By the Minkowski bound,(
4

π

)r2 ( n!

nn

)√
|∆K | =

3!

33
(7) =

42

27
< 2

since r2 = 0. Since the Hermite-Minkowski bound is less than 2, all elements of Cl(K) are
trivial.

3.12 Dirichlet unit theorem

Theorem 3.12.1 (Dirichlet unit theorem). Let K be a number field with ring of integers
OK. Let UK = O×K. Let r1 be the number of real embeddings of K, and r2 be the number of
complex embeddings of K. Let µ(K) be the group of roots of unity in K. Then

UK ∼= µ(K)× Zr1+r2−1

In particular, UK is a finitely generated abelian group.

The results that follow are used to build up the proof of the preceding theorem.

Proposition 3.12.2. Let x ∈ OK. Then x is a unit if and only if NK
Q (x) = ±1.
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Proposition 3.12.3. Let K be a number field, with associated r1, r2. Let σ1, . . . , σr1+r2 be
the emeddings of K into C. Let

L : K× → Rr1+r2 x 7→
(

log |σ1(x)|, . . . , log |σr1+r2(x)|
)

be the logarithmic canonical “embedding” (not actually injective, but traditionally called an
embedding nonetheless). (Note that L(xy) = L(x) +L(y).) Let C ⊂ Rr1+r2 be a bounded set.
Then

L−1(C) ∩ UK
is finite. Consequently, L(UK) is a discrete subgroup (lattice) in Rr1+r2, that is, L(UK) ∼= Zr
for some r ≤ r1 + r2.

Remark 3.12.4. In the language of the previous proposition, it is not hard to obtain the
refined estimate r1 +r2−1 for the rank of L(UK), since the image of L lies in the hyperplane
W ⊂ Rr1+r2 defined by

r1∑
i=1

yi + 2

r2∑
j=r1+1

yj = 0

Since W is defined by one equation,

dimRW = r1 + r2 − 1

and as previously noted, L(UK) ⊂ W , so the rank of L(UK) is bounded above by r1 + r2− 1.
This is the value we want for Dirichlet’s unit theorem, so we just need to verify that this
bound is attained, which is to say, we want L(UK) to be a full lattice in W .

Proposition 3.12.5. Let K be a number field, and let L be the log canonical embedding.
Then

kerL|UK = µ(K)

Proof. Let σ1, . . . , σr1+r2 be the distinct embeddings of K into C. Let x ∈ µ(K), with xn = 1.
Then |σi(x)|n = 1, so |σi(x)| = 1, so L(x) = (0, . . . , 0), hence x ∈ kerL.

Conversely, we apply Proposition 3.12.3 to C = {0}, we get that kerL|UK is finite, which
is to say, it is a finite subgroup of K×, which is to say it is a subset of µ(K).

Remark 3.12.6. Using the previous result, we have an exact sequence of abelian groups

1→ µ(K)→ UK → L(UK)→ 1

Since L(UK) is free abelian, it is projective, so this sequence splits. Hence

UK ∼= µ(K)× L(UK) ∼= µ(K) ∼= Zr

for some r satisfying r ≤ r1 + r2 − 1. Now we really just need to show that L(UK) has the
maximum possible rank, and the unit theorem is proved.

Proposition 3.12.7. Let V be a finite dimensional real vector space. A discrete subgroup
Λ ⊂ V is a full lattice if and only if there exists a bounded subset M ⊂ V such that transla-
tions of Λ by M cover V .
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Proposition 3.12.8. Let K be a number field. For each n ∈ Z>0, only finitely many a ∈ OK
satisfy

|NK
Q (a)| = n

up to multiplication by units. More precisely, there exist a1, . . . , ak with k depending on n,
such that

|NK
Q (ai)| = n

and any a ∈ OK satisfying |N(a)| = n differs from some ai by a unit u ∈ UK.

Proof. If |N(a)| = n, then

[OK : (a)] = N((a)) = |N(a)| = n

hence (n) ⊂ (a) ⊂ OK . By a standard correspondence, such ideals (a) correspond to ideals
of the quotient ring OK/(n). Since OK/(n) is a finite ring, there are only finitely many such
ideals. Hence there are only finitely many such a up to multiplication by units.

Proposition 3.12.9. Let K be a number field, with associated r1, r2, such that r1 + 2r2 =
[K : Q]. Set V = Rr1 × Cr2. Let σ : K → V be the canonical embedding, and let

N : V → R N(y1, . . . , yr1 , z1, . . . , zr2) = y1 · · · yr|z1|2 · · · |zr2|2

(Note that N(σx) = NK
Q (x).) Let V × ⊂ V be the subset with nonzero entries in each

component, viewed as a group with componentwise multiplication. Set

G =
{
v ∈ V × : |N(v)| = 1

}
Then

1. G is a closed subgroup of V ×.

2. σ(UK) is a discrete subgroup of G (and since G is abelian, it is normal).

3. The quotient group G/σ(UK) is compact in the quotient topology.

Remark 3.12.10. With the previous proposition, we can finish the proof of the Dirichlet
unit theorem by showing that L(UK) is a lattice of rank r1 + r2−1. Continuing the notation
of Proposition 3.12.9, define

L̃ : V × → Rr1+r2 (y1, . . . , yr1 , z1, . . . , zr2) 7→
(

log |σ1y1|, . . . , log |σr2zr2|
)

and consider the composition

K× V × Rr1+r2σ L̃

Note that L̃◦σ is the same as the map L from Proposition 3.12.3. As before, let W ⊂ Rr1+r2

be the hyperplane defined by
r1∑
i=1

yi + 2

r2∑
j=r1+1

yj = 0
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Now set Λ = L(UK) ⊂ W . Note that L̃ is continuous and surjective, and that L̃(G) =

W . Thus we obtain an induced map L̃ : G → W , which induce a map on the quotients
G/σ(UK) → W/L(UK) = W/Λ. Since L̃ is continuous and surjective, this induced map is
also continuous and surjective.

Since G/U is compact by 3.12.9, so is W/Λ. Thus W/Λ is bounded, so Λ is a full lattice
in W . Thus the rank of Λ = L(UK) is r1 + r2 − 1.

3.13 Applications of the Dirichlet unit theorem

3.13.1 Quadratic number fields

Proposition 3.13.1. Let K be an imaginary quadratic number field. Then Uk ∼= µ(K).

Proof. We have K = Q(
√
d) with d < 0 and square free. Thus r1 = 0, r2 = 1, so r1 +r2−1 =

0. Thus by the unit theorem, the free part of µ(K) has rank zero. The torsion part is
µ(K).

Proposition 3.13.2. Let K be a real quadratic number field. Then

UK ∼= {±1} × Z

In particular, the positive units (> 0 after embedding K ↪→ R) form a subgroup of K iso-
morphic to Z, so there is a generator ε which is unique if we require ε > 1.

Proof. We have K = Q(
√
d) with d > 0 and square free. Thus r1 = 2, r2 = 0, so the free

part of UK has rank 2 + 0− 1 = 1. Since K has a real embedding, µ(K) ∼= {±1}.
Remark 3.13.3. Let K be a real quadratic number field. What can we say about the fun-
damental unit ε? Suppose x = a+ b

√
d with a, b ∈ Q is a unit in OK . Then x, x−1,−x,−x−1

are also units, and N(x) = a2 − b2d = ±1. For x 6= ±1, only on of ±a± b
√
d is bigger than

1, so we can assume a, b > 0 in our search for ε. Past this point, we need to consider the
cases d ≡ 2, 3 mod 4 and d ≡ 1 mod 4 separately, since OK depends on these cases.

We start by considering d ≡ 2, 3 mod 4, in which case OK = Z[
√
d]. Hence a unit

x = a+b
√
d has a, b ∈ Z satisfying a2−bdd = ±1. Suppose ε = a1 +b1

√
d is the fundamental

unit, ε > 1, so a1, b1 > 0. Define an, bn by

an + bn
√
d = εn = (a1 + b1

√
d)n

A bit of algebraic manipulation shows bn = a1bn−1+an−1b1, so b1, b2, . . . is a strictly increasing
sequence. To calculate a1 + b1

√
d, just compute

d, 4d, 9d, 16d, . . .

until one of these differs by a square from ±1. When b2d = a2 ± 1, we set ε = a+ b
√
d, and

we know that this is the fundamental unit.

Example 3.13.4. Let K = Q(
√

7). This fits in the case d ≡ 2, 3 mod 4. The sequence b2d
is

7, 28, 63, . . .

and 63 = 64− 1, so the fundamental unit is b1 = 3, a1 = 8.

ε = 8 + 3
√

7
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Example 3.13.5. Let K = Q(
√

82). This fits in the case d =≡ 2, 3 mod 4. The sequence
b2d starts with 82 which already differs from a square by ±1, so the fundamental unit is

ε = 9 +
√

82

Remark 3.13.6. Now we continue the general discussion of finding a fundamental unit for

a real quadratic number field in the case where d ≡ 1 mod 4. In this case, OK = Z
[

1+
√
d

2
]
]
,

so if 1
2

(
a+ b

√
d
)

is a unit, then

a2 − db2 = ±4

If 1
2

(
a1 + b1

√
d
)

is a fundamental unit (a1, b1 > 0), then the solutions to the equation above

are given by the sequence
an + bn

√
d = (a1 + b1

√
d)221−n

Similar to the previous case, to find a1, a2, consider the sequence d, 4d, 9d, . . . and stop when
b2d differs from a square by ±4. The first b when you stop is b1, and a1 is the square root of
the square which b2d is ±4 away from.

Example 3.13.7. Let K = Q(
√

5). The first term of the sequence b2d is 5 which already
differs from the sqaure 1 by 4, so a1 = b1 = 1 and the fundamental unit is

1

2

(
1 +
√

5
)

3.13.2 A higher degree example

Example 3.13.8. Let f(x) = x3+x2−2x−1 and let α be a root of f . Let K = Q(α). Earlier,
we showed that f has three real roots, so there are three real embeddings, so r1 = 3, r2 = 0.
Since K is totally real, µ(K) ∼= {±1}. Thus

UK ∼= {±1} × Z2

3.14 Generalization of unit theorem for S-units

Remark 3.14.1. The following generalization of Dirichlet’s unit theorem is not usually
phrased in this way; it is usually phrased in the language of ideles, but we aren’t covering
that in this class.

Proposition 3.14.2. Let K be a number field, and let S ⊂ specOK be a finite set. Then

UK(S) ∼= µ(K)× Zr1+r2+|S|−1

Proof. Let S = {p1, . . . , pt}, and consider

φ : UK(S)→ Zt u 7→
(
vp1(u), . . . , vpt(u)

)
Note that φ is a group homomorphism, and that kerφ = UK . Let hK = |Cl(K)|. Then for
any i, phKi is a principal ideal, say generated by the element πi ∈ OK .

phKi = (πi)
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By unique factorization of ideals,

φ(πi) = (0, . . . , 0, hK , 0, . . . , 0)

with the hK occuring the the ith index. Thus φ(π1), . . . , φ(πt) generate a subgroup of Zt of
rank t, and we have a short exact sequence

1 UK UK(S) Zt 1
φ

Since Zt is projective, this splits, so we obtain

UK(S) ∼= UK × Zt ∼= µ(K)× Zr1+r2−1 × Z|S| ∼= µ(K)× Zr1+r2+|S|−1

3.15 Cyclotomic fields

Proposition 3.15.1. Let n ∈ Z≥1 and let ζ be a primitive nth root of unity. Let K = Q(ζ).
Then

1. The minimal polynomial of ζ is the nth cyclotomic polynomial

Φn(x) =
∏

m∈(Z/prZ)×

(x− ζm) ∈ Z[x]

and K is the splitting field of Φn.

2. [K : Q] = φ(n), where φ is the Euler totient function.

3. K/Q is Galois with Gal(K/Q) ∼= (Z/nZ)×.

Proposition 3.15.2. Let p be a prime and r ∈ Z≥1. Let ζ be a primitive prth root of unity,
and let K = Q(ζ). Then

1. If ζ ′ is another primitive prth root of unity, then 1−ζ′
1−ζ is a unit in Z[ζ], hence also a

unit in OK.

2. OK = Z[ζ]

3. The element 1− ζ generates a prime ideal of OK, and

(p) = (1− ζ)e

where e = [K : Q] = φ(pr) = (p− 1)pr−1. That is, p is totally ramified.

4. The discriminant is disc(OK/Z) = ±pc, where

c = pr−1(pr − r − 1)

Hence p is the only prime that ramifies.

37



Proposition 3.15.3. Let n,m ∈ Z≥1 and let ζn, ζm be primitive nth, mth roots of unity
respectively. If gcd(n,m) = 1, then ζmn is a primitive mnth root of unity, and consequently

Q(ζmn) = Q(ζn)Q(ζm) = Q(ζn, ζm)

where the middle term is the compositum in Qal (or C, if you prefer), and

Q(ζm) ∩Q(ζn) = Q

Proposition 3.15.4 (from Neukirch). Let L/Q, L′Q be Galois of degrees n, n′ respectively,
such that L∩L′ = Q. Suppose w1, . . . , wn and w′1, . . . , w

′
n are Z-bases for OL,OL′ respectively.

Suppose
D = D(w1, . . . , wn) D′ = D(w′1, . . . , w

′
n)

are relatively prime. Then
{
wiw

′
j : 1 ≤ i ≤ n, 1 ≤ j ≤ n′

}
is a Z-basis of OLL′ with

D(wiw
′
j) = Dn′(D′)n

Proposition 3.15.5. Let ζ be a primitive nth root of unity and let K = Q(ζ). Then
OK = Z[ζ]. In particular, 1, ζ, . . . , ζφ(n)−1 is a Z-basis of OK.

Proof. Write n as a product of primes n = pt11 . . . p
tr
r , and let ζi = ζn/(p

ti
i ). Then

Q(ζ) = Q(ζ) = Q(ζ1) · · ·Q(ζr)

with
Q(ζ1) · · ·Q(ζi−1) ∩Q(ζi) = Q

Since 1, ζi, . . . , ζ
φ(pi)
i is a Z-basis of OQ(ζi) by previous work, and the discriminant for Q(ζi)

is a power of pi, by the Neukirch result, we can induct and conclude that the products of
various powers of ζi give a Z-basis for OK .

Proposition 3.15.6. Let n ∈ Z≥1 and let ζ be a primitive nth root of unity and let K =
Q(ζ). Let n ∈ Z, written as a product of primes n =

∏
p p

tp. For a prime p, let fp be the
smallest positive integer such that

pfp ≡ 1 mod

(
n

ptp

)
Then (p) factors in OK as

(p) = (p1 · · · pr)φ(p)tp

where p1, . . . , pr are distinct primes of OK, all of residual degree fp.
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3.16 Special case of Fermat’s last theorem

Definition 3.16.1. Let p be an odd prime, and let ζ be a primitive pth root of unity, and
let K = Q(ζ). The prime p is regular if p does not divide hK = |Cl(K)|.

Definition 3.16.2. Then nth Bernoulli number Bn is defined by the equation

t

et − 1
=
∞∑
n=0

Bn
tn

n!

Note that Bn ∈ Q.

Proposition 3.16.3 (Kummer’s criterion). An odd prime p is not regular if and only if p
divides the numerator of some Bernoulli number Bk for k = 2, 4, . . . , p− 3.

Proposition 3.16.4 (Fermat’s last theorem for regular primes, due to Kummer). Let p be
a regular prime. Then

xp + yp = zp

has no nontrivial solutions for x, y, z ∈ Z with p|xyz.

3.17 Local fields

Proposition 3.17.1. An absolute value is nonarchimedean if and only if the values |n1| are
bounded for all n ∈ Z. (In particular, if a field has positive characteristic, this is a finite set
so there are only nonarchimedean absolute values.)

Theorem 3.17.2 (Ostrowski). Any nontrivial absolute value on Q is equivalent to | · |∞ or
to | · |p for some prime p. (This has a nice generalization to number fields as well.)

Proposition 3.17.3 (Product formula). Let x ∈ Q×. Then∏
α

|x|α = 1

where α ranges over {∞, 2, 3, 5, . . .}. Another way to write this is∏
p prime

|x|p =
1

|x|∞

Proposition 3.17.4 (Some properties of nonarchimedean analysis). Let K be a field with
nonarchimedean absolute value and associated metric topology.

1. If a sequence (xn) converges to x ∈ K, then |xn| = |x| for n � 0. (This does NOT
say that the sequence eventually stabilizes, but the sequence of absolute values does
eventually stabilize.)

2. A sequence (xn) is Cauchy if and only if |xn+1 − xn| → 0 as n→∞.

3. If a sequence (xn) is Cauchy and not limiting to zero, then |xn| = |xm| for n,m� 0.
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4. Suppose K is complete. A series converges if and only if the nth term tends to zero.

Proposition 3.17.5. Let K be a field with nonarchimedean absolute value and associated
metric topology. Let

B(a, r) = {x ∈ K : |x− a| < r}
B(a, r) = {x ∈ K : |x− a| ≤ r}

(Don’t be tricked by the notation: B(a, r) is not necessarily the closure of B(a, r). Or maybe
it is and this is obvious, I’m not sure. Just don’t assume it without thinking it through, just
a warning.)

1. If b ∈ B(a, r), then B(a, r) = B(b, r). That is, every point inside an open ball is a
center for that ball.

2. If b ∈ B(a, r), then B(a, r) = B(b, r).

3. B(a, r) is both open and closed.

4. Two balls in K have non-empty intersection if and only if one contains the other. More
precisely, if a, b ∈ K and r, s ∈ R>0, then

B(a, r) ∩B(r, s) = ∅

if and only if one ball contains the other.

5. The topology on K is totally disconnected.

Proposition 3.17.6. Q is not complete with respect to any p-adict absolute value.

Proposition 3.17.7 (Completions). Let K be a field with absolute value. There exists a

field K̂ with an absolute value such that K ↪→ K̂, and the absolute value extends, and K̂ is
complete. Furthermore, the image of K is dense in K̂.

Also, K̂ has the following universal property. Any isometry K → E of metric fields
extends uniquely to K̂, making the following diagram commute. Consequently, K̂ is unique
up to isometry.

K̂ Ê

K E

φ̂

φ

Example 3.17.8. R is the completion of Q with respect to | · |∞. Qp is (by definition) the
completion of Q with respect to | · |p. By Ostrowski’s theorem, there are no other complete
fields containing Q.

Proposition 3.17.9. For each nonzero x ∈ Qp, there exists n ∈ Z such that |x|p = p−n. As
a consequence, the normalized discrete valuation vp : Q→ Z extends to Qp.
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Proposition 3.17.10. The inclusion Z ↪→ Zp has dense image. More precisely, if x ∈ Zp
and n ≥ 1, there exists a unique α ∈ Z with 0 ≤ α ≤ pn − 1 such that |x− α|p ≤ p−n.

Consequently, for x ∈ Zp, there exists a unique Cauchy sequence (αn) with αn → x, with
αn ∈ Z, 0 ≤ αn ≤ pn − 1 and αn ≡ αn−1 mod pn−1.

As a further consequence, for any n ≥ 1, we have an exact sequence

0→ Zp → Zp → Z/pnZ→ 0

which implies
Zp = lim←−Z/pnZ

Proposition 3.17.11. Every x ∈ Qp can be written as a “Taylor series in p with integer
coefficients”. More precisely, x can be written as

x = b−mp
−m + · · ·+ b0 + b1p+ b2p

2 + · · ·

If we reduce each bi modulo p, so that 0 ≤ bi ≤ p − 1, then this expansion is unique. Note
that the first nonzero coefficient gives the valuation of x, that is,

vp(x) = −m

Consequently x ∈ Qp is in Zp if and only if the series corresponding to x starts with i ≥ 0.

Example 3.17.12. Let p be any prime and x = −1. In Qp, we have

−1 =
∞∑
i=0

(p− 1)pi = (p− 1) + (p− 1)p+ (p− 1)p2 + ·

Example 3.17.13. Let p = 3 and x = 1
2
. In Q3, we have

−1

2
=

1

1− 3
= 1 + 3 + 32 + 33 + · · ·

so
1

2
= 1− 1

2
= 2 + 3 + 32 + · · ·

Proposition 3.17.14. Let (X, d) be a metric space. Then X is compact if and only if X is
complete and totally bounded.

Proposition 3.17.15. Zp is compact, and hence Qp is locally compact.

Proposition 3.17.16. A topological group of profinite if and only if it is compact, Hausdorff,
and totally disconnected.

Proposition 3.17.17. Let K be a field with nontrivial absolute value. The following are
equivalent.

1. K is a local field.

2. There exists at least one compact closed ball in K.
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3. Every closed ball in K is compact. That is, every set of the form

B(a, r) = {x ∈ K : |x− a| ≤ r}

for a ∈ K, r ∈ R≥0 is compact.

Proof. (3) =⇒ (1) =⇒ (2) is obvious, so we just need to show (2) =⇒ (3). By (2),
we can choose a, r so that B(a, r) is compact. Note that the translation x 7→ x + a is a
homeomorphism K → K, so B(0, r) is compact.

Since the absolute value is nontrivial, there exists a ∈ K with |a| > 1. The map x 7→ ax
is a homeomorphism K → K which takes B(0, δ) to B(0, δ|a|), so

B(0, δr|a|), B(0, δr|a|2), . . . , B(0, r|a|n), . . .

are compact for all n. Thus, closed balls of arbitrarily large radius centered at zero are
compact. Any closed ball centered at zero is contained in one of these, so it is also compact.
Thus all closed balls centered at zero (or any radius) are compact. By translation again, all
balls are compact.

Proposition 3.17.18. A local field is complete.

Proof. We prove the contrapositive (not complete =⇒ not local). Let K be a field with

nontrivial absolute value which is not complete. Let K̂ be the completion of K, and choose
x ∈ K̂ \K, and a Cauchy sequence xn in K converging to x. Since the sequence is Cauchy,
we can choose a closed ball B ⊂ K containing all xn for n� 0. Set

Un =

{
y ∈ K : |y − x| > 1

n

}
= K \B

(
x,

1

n

)
Note that the sets Un cover K; in particular, they are an open cover of B. However, there is
no finite subcover, since the sequence xn eventually escapes Un and B contains the sequence
xn. Thus K is not local.

Proposition 3.17.19. Let K be a nonarchimedean valued field with associated valuation v.
The following are equivalent.

1. K is local.

2. The valuation ring Ov is compact.

3. K is complete, v is discrete, and the residue field Ov/mv is finite.

Remark 3.17.20. For an arbitrary nonarchimedean field K with valuation ring Ov, we can
write down power series expressions for elements of Ov and Laurent series expressions for
elements of K.

Proposition 3.17.21. Let p, q be primes. Then Qp
∼= Qq as abstract fields if and only if

p = q.
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Remark 3.17.22. The reverse direction is obvious. The forward direction is obvious IF we
require the isomorphism to preserve the absolute value, since in that case the isomorphism
of valued fields would induce an isomorphism of residue fields Fp ∼= Fq, which is only possible
if p = q. However, we want to see that even if they are just isomorphic as fields, then p = q.

Proposition 3.17.23. Let p be a prime. Then

1.
∑∞

n=0 anp
n ∈ Zp is a unit if and only if a0 is a unit, if and only if a0 6= 0 (since

a0 ∈ Z/pZ.

2. For p 6= 2, the units of Zp are

Z×p ∼= Zp × (Z/pZ)×

(isomorphism of groups).

3. For p = 2,
Z×2 ∼= Z2 × {±1}

(isomorphism of groups).

4. For any prime p,
Q×p ∼= Z× Z×p

Since Z,Zp are torsion free, the only roots of unit of Qp are ±1 and (p− 1)st roots of
unity if p ≥ 3, and ±1 if p = 2.

Remark 3.17.24. As a consequence of the above discussion of roots of unity in Qp, we can
say that Qp for p ≥ 3 is not isomorphic to R as abstract fields, since R only contains ±1 as
roots of unity. Obviously, Qp is not isomorphic to C as a field, by similar reasoning, as C
contains all roots of unity.

Proposition 3.17.25. If p is an odd prime and n ≥ 1, then (Z/pnZ)× is cyclic.

Proposition 3.17.26. Let

f(x) =
∞∑
n=0

anx
n ∈ Qp[[x]]

Define

rf =
1

lim sup |an|1/np

Then f(x) converges for x such that |x|p < rf and diverges if |x|p > rf . (If |x|p = rf , it may
or may not converge.)

Proposition 3.17.27. The domain of convergence of a power series f ∈ Qp[[x]] is either a
point, a ball, or all of Qp, and convergence on that domain is uniform.

Proposition 3.17.28. For a prime p ≥ 3,

exp : pZp → (1 + pZp) ∼= Zp
with inverse given by the p-adic logarithm. If p = 2, the same maps give an isomorphism (of
topological gropus)

2Z2 → 1 + 4Z2
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3.17.1 Hensel’s Lemma

Proposition 3.17.29 (Hensel’s lemma, version 1). Let K be a complete nonarchimedean
discretely valued field, and let

OK = {x ∈ K : |x| ≤ 1}

be the associated local ring with maximal ideal

m = {x ∈ K : |x| < 1}

Let f(t) ∈ OK [t] be monic, and suppose x1 ∈ OK such that |f ′(x1)| = 1 and f ′(x1) 6≡
0 mod m. Then there exists a unique x ∈ OK such that f(x) = 0 and |x− x1| < |f(x1)|.

Proposition 3.17.30 (Hensel’s lemma, version 2). Let K be a complete nonarchimedean
discretely valued field, with associated local ring (OK ,m). Let f(x) ∈ OK [x] be monic.
Suppose x1 ∈ OK such that

f ′(x1) 6= 0 |f(x1)| < |f ′(x1)|2

Then there exists a unique x ∈ OK such that f(x) = 0 and

|x− x1| ≤
∣∣∣∣ f(x1)

f ′(x1)

∣∣∣∣
Proposition 3.17.31 (Hensel’s lemma, version 3). Let K be a complete nonarchimedean
discretely valued field, with associated local ring (OK ,m), and residue field k = OK/m. Let
f ∈ OK [x], and suppose there exist g1, h1 ∈ OK [x] with g1 monic and gcd(g1, h1) = 1 such
that

f = g1h1 ∈ k[x] (equivalently f ≡ g1h1 mod m)

Then there exist g, h ∈ OK [x] such that g is monic, g = g1, h = h1, and f = gh. That
is, factorizations of polynomials over k lift to factorizations over OK, provided there are no
common factors and one is monic.

3.17.2 Applications of Hensel’s lemma

Proposition 3.17.32. Let p be an odd prime. Then u ∈ Z×p is a square if and only if
u mod p is a square in F×p .

Proof. Clearly if u = a2 is a square in Zp, then u = a2 mod p so u mod p is a square in F×p .
For the converse, we apply Hensel’s lemma, version 3 in the case K = Qp,OK = Zp,m =
pZp, k = Zp/pZp ∼= Fp to the polynomial f(x) = x2−u ∈ Zp[x]. Suppose u mod p is a square
in Fp,

u ≡ a2 (mod p)

for some a ∈ Z×p . Then f splits as

f(x) ≡ x2 − u ≡ x2 − a2 ≡ (x− a)(x+ a) (mod p)

44



Since p 6= 2, a 6= −a so gcd(x+a, x−a) = 1. Then by Hensel’s lemma, there exist g, h ∈ Zp[x]
such that

g ≡ x+ a (mod p)

h ≡ x− a (mod p)

f = gh ∈ Zp[x]

That is, there are b, c ∈ Zp such that

g(x) = x+ b h(x) = x− c b ≡ c ≡ a (mod p)

Then
f(x) = x2 − u = g(x)h(x) = (x+ b)(x− c) = x2 + (b− c)x− bc

which implies b = c, and then b2 = u.

Remark 3.17.33. Let p = 2. The analogous version of the previous proposition says that
u ∈ Z×2 is a square if and only if u ≡ 1 mod 8. As above, one direction is immediate. The
converse requires version 2 of Hensel’s lemma, applied to the same polynomial x2 − u.

Lemma 3.17.34. Let x ∈ Q×p . The following are equivalent.

1. x ∈ Z×p .

2. xp−1 has nth roots for infinitely many n ∈ Z≥1.

Proposition 3.17.35. The only field automorphism of Qp is the identity.

Proof. Let φ : Qp → Qp be a field automorphism. Then φ|Q = IdQ, and by the previous
lemma, if u ∈ Z×p then φ(u) ∈ Z×p , since having nth roots is preserved by a field automor-

phism. Since Qp = Zp
[

1
p

]
, we can write any x ∈ Q×p as

x = pnu u ∈ Z×p
Then

φ(x) = φ(pnu) = pnφ(u)

with φ(u) ∈ Z×p as noted previously, hence

vp(φ(x)) = n = vp(x)

that is, φ preserves the p-adic valuation. Equivalently, φ preserves the p-adic absolute value,
which implies that φ is continuous. Since Q ⊂ Qp is dense, φ is determined by its values on
Q, hence φ = IdQp .

Proposition 3.17.36. Let K be a complete local field.

1. If K is archimedean, then K ∼= R or K ∼= C.

2. If K is nonarchimedean and charK = p, then K ∼= Fq((t)) for some q = pn, and the
residue field is kK ∼= Fq. (This case is called “equal characteristic”.)

3. If K is nonarchimedean and charK = 0, then K is a finite extension of Qp for some
p, and the residue field is kK ∼= Fp. (This case is called “mixed characteristic.”)
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3.17.3 Extending absolute values

Lemma 3.17.37. Let K be a complete nonarchimedean discretely valued field. Let f ∈ K[t]
be monic irreducible with f(0) ∈ OK. Then f ∈ OK [t].

Proposition 3.17.38. Let K be a complete nonarchimedean discretely valued field, and let
L/K be a finite extension, with n = [L : K]. Then there is a unique absolute value on L
extending the absolute value on K, such that L is complete with respect to the absolue value.
Explicitly,

|x|L =
∣∣NL

K(x)
∣∣1/n
K

Furthermore, the valuation ring OL is the integral closure of OK in L.

Remark 3.17.39. By the above, if L/K is Galois and α, α′ ∈ L are Galois conjugates, then
|α|L = |α′|L, since α, α′ have the same norm.

Remark 3.17.40. Let K be a complete valued field as in the previous theorem. Since the
algebraic closure of K is the union over all finite extensions of K, using the previous theorem,
we can extend the absolute value on K uniquely to the algebraic closure. (This can also be
done for the separable closure if that is desirable.) However, this does not tell us that the
algebraic closure is complete with respect to the extended value, and usually it is not. We
now have processes

K  K̂ K  Kalg

both with unique extensions of the absolute value. So we can do things like

K  K̂  K̂alg  ̂̂
Kalg  ̂̂

Kalg
alg

 · · ·

which in principle may never terminate, since after taking the completion, we may not have
an algebraically closed field, and after taking the algebraic closure, we may not have a
complete field.

For example, the algebraic closure of Qp is not complete with respect to to the extended
absolute value (assertion without proof here, not obvious). It is a theorem (beyond this
class) that if you form the completion of Qalg

p with respect to its absolute value that the
resulting field is algebraically closed in addition to being complete. That is, starting with Q
with p-adic absolute value, the above process terminates after

Q Qp  Qalg
p  Q̂alg

p

since this completion is algebraically closed, taking the algebraic closure does nothing.

Proposition 3.17.41. Let K be a complete nonarchimedean discretely valued field, and let
L/K be a finite separable extension, with extended absolute value, such that the valuation on
L is also discrete. Then OL is a free OK-module of rank [L : K].

Proposition 3.17.42. Let K be a comlpete nonarchimedean discretely valued field, and L/K
a finite extension, with extended absolute value. Assume that the residue fields kK , kL are
perfect. Then

[L : K] = eL/KfL/K
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Proof. Let d = [L : K]. By the previous result, OL ∼= OdK as an OK-module. Let πK , πL be
uniformizers, that is,

(πK) = πKOK = mK (πL) = πLOL = mL

Then
OL/πKOL ∼= OdK/πkOdK ∼= (OK/πKOK)d ∼= (kK)d

Recall that by definition of e = eL/K , (πK) = (πeL). Consider the filtration

OL ⊃ πLOL ⊃ π2
LOL ⊃ · · · ⊃ πeLOL = πkOL

(πL) (π2
L) (πeL) = (πk)

Recall that by definition of f = fL/K , we have kL ∼= kfK . At each step of the filtration, we
have

πiLOK/πi+1
L OL ∼= OL/πLOL ∼= kL ∼= kfK

Since there are e steps in the filtration, and each step has successive quotient kfk , in total we
have

OL/πKOL ∼=
(
kfK

)e
= kefK

Since this quotient is also kdK , we get d = ef as desired.

Proposition 3.17.43. The indices e, f are “multiplicative in towers.” More precisely, let
K be a complete nonarchimedean discretely valued field, and let K ⊂ L ⊂ M be a tower of
finite extensions. Then

eMK = eML e
L
K fMK = fML f

L
K

Proof. For f , this just follows from the tower law for field extensions.

fMK = [kM : kK ] = [kM : kL][kL : kK ] = fML f
L
M

The result for e could probably be proved directly, but it also follows using the tower law
for f , the tower law for K ⊂ L ⊂M , and the previous result [L : K] = eLKf

L
K .

eMK =
[M : K]

fMK
=

[M : L][L : K]

fML f
L
K

=

(
[M : L]

fML

)(
[L : K]

fLK

)
= eML e

L
K

Example 3.17.44. Let K = Q5 and L = Q5(
√

2), so [L : K] = 2. Normalize the discrete
valuation on K so that vK(K×) = Z and vL(L×) = 1

e
Z. Note that

NL
K(
√

2) =
√

2(−
√

2) = 2

so
|
√

2|L = |2|1/2K = 1

so
√

2 ∈ OL. Thus there is an element of the residue field kL = OL/mL which is a root of
x2−2. Since x2−2 is irreducible over kK ∼= F5, the extension kL/kK has degree greater than
1, that is, f > 1. Since ef = 2, this forces f = 2, e = 1. Hence Q5(

√
2) is totally unramified

over Q5.
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Example 3.17.45. Let K = Q5 and L = Q5(
√

5), so [L : K] = 2. Normalize the discrete
valuation on K so that vK(K×) = Z and vL(L×) = 1

e
Z. Then

1 = vL(5) = 2vL(
√

5) =⇒ vL(
√

5) =
1

2

Thus e ≥ 2, so f = 1, e = 2, and
√

5 is a uniformizer.

Example 3.17.46. Let K = Q3 and L = Q3(
√

2, ζ) where ζ is a primitive 3rd root of unity.
Note that [L : K] = 4.

Q3(
√

2, ζ)

Q3(ζ) Q3(
√

2)

Q3

2 2

22

Note that ζ is a root of x2 + x+ 1 over Q3. By a similar argument as in Example 3.17.44,

e
Q3(
√

2)
Q3

= 1 f
Q3(
√

2)
Q3

= 2

Regarding Q3(ζ), we observe that

x2 + x+ 1 = (x− ζ)(x− ζ2) =⇒ 3 = (ζ − 1)(ζ2 − 1)

=⇒ vQ3(ζ)(3) = 1 = vL(ζ − 1) + vL(ζ2 − 1)

Since ζ − 1, ζ2 − 1 are Galois conjugates, they have equal valuation. Hence

vL(ζ − 1) =
1

2

so
eQ3(ζ)Q3 = 2 f

Q3(ζ)
Q3

= 1

Returning to our original diagram, we can write in the ramification and residual degrees
we computed. Since all the extensions are degree 2, we can also deduce ramification and
residual degrees for the upper extensions and the total extension L/K by multiplicativity in
towers.

Q3(
√

2, ζ)

Q3(ζ) Q3(
√

2)

Q3

e=2, f=1 e=1, f=2

e=2, f=1e=1, f=2

By multiplicativity in towers,
eLK = fLK = 2
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3.17.4 Unramified extensions

Proposition 3.17.47. Let K be a complete nonarchimedean discretely valued field, with
perfect residue field kK. For a finite unramified extension L/K, by the primitive element
theorem we can write L as L = K(α) for some α ∈ L. Define

kL = kK(α)

This gives a bijection

Ψ : {finite unramified extensions of K} → {finite extensions of kK}
L = K(α) 7→ kL = kK(α)

Furthermore, if L/K and L′/K are finite unramified extensions, there is an isomorphism

HomK(L,L′)→ HomkK (kL, kL′)

φ 7→ φ|OL mod mK

That is, the bijection Ψ is actually an equivalence of categories.

Proposition 3.17.48. Let K be as above, and let L/K be a finite unramified extension.
Then

Aut(L/K) ∼= Aut(kL/kK)

Thus L/K is Galois if and only if kL/kK is Galois and in this case,

Gal(L/K) ∼= Gal(kL/kK)

In particular, if kK is finite, then any unramified finite extension L/K is cyclic Galois.
(Since any finite extension of a finite field is cyclic Galois.)

Proof. A finite extension L/K is Galois if and only if K is the fixed field of Aut(L/K). By
the equivalence of categories above, Aut(L/K) ∼= Aut(kL/kk), and K is the fixed field of
Aut(L/K) if and only kK is the fixed field of Aut(kL/kK).

Example 3.17.49. Let K = Qp. The residue field is kK = Fp. Since kK has a unique finite
extension of degree n for each n ∈ Z≥1, Qp has a unique unramified extension Ln of degree
n for each n ∈ Z≥1. Concretely,

Ln = Qp(µpn−1)

where µpn−1 is the group of pn − 1 roots of unity. To point out the blatantly obvious, Ln
corresponds to the extension Fpn/Fp, and

Gal(Ln/Qp) ∼= Gal(Fpn/Fp) ∼= Z/nZ

Proposition 3.17.50. Let K be a complete nonarchimedean discretely valued field, with
perfect residue field kK, and let L/K be a finite separable extension. There exists a unique
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subextension K ′ such that L/K ′ is totally ramified and K ′/K is unramified.

L

K ′

K

f=1 totally ramified

e=1 unramified

(K ′ is called the maximal unramified extension of K in L.)

Proof. Since kL/kK is a finite extension, by the Proposition 3.17.47, there exists a unique
unramified extension K ′/K such that kL ∼= kK′ . By multiplicativity in towers, fLK′ = 1.

Example 3.17.51. Let K = Q3, L = Q3(
√

2, ζ) where ζ is a primitive 3rd root of unity.
We considered this example previously, and saw that Q3(

√
2) is the maximal unramified

subextension.

3.17.5 Totally ramified extensions

Proposition 3.17.52. Let K be a complete nonarchimedean discretely valued field, and let
L/K be a totally unramified extension, and set e = [L : K]. Let πL be a uniformizer for L,
and assume the discrete valuation vL is normalized so that vL(πL) = 1. Then πL satsifies an
Eistenstein polynomial of degree e over OK, and

OL = OK [πL] L = K(πL)

Conversely, if f ∈ OK [x] is Eisenstein, then K[x]/(f) is a totally ramified extension of K
and if α is a root of f , then vK(α)(α) = 1, so roots of f give uniformizers for K(α).

Example 3.17.53. Let ζ be a primitive 3rd root of unity. Then Q3(ζ)Q is totally ramified
of degree 2, with uniformizer ζ − 1, since the minimal polynomial of ζ is x2 + x+ 1 and the
minimal polynomial of ζ − 1 is x2 + 3x+ 3, which is Eisenstein.

Proposition 3.17.54 (Krasner’s lemma). Let K be a complete nonarchimedean discretely
valued field. Let f ∈ K[x] be monic irreducible with d = deg f , and factor f over an algebraic
closure Kalg as

f(x) =
d∏
i=1

(x− αi)

Suppose β ∈ Kalg such that

|β − α1| < |β − αi| i = 2, 3, . . . , d

Then α1 ∈ K(β), hence K(α1) ⊂ K(β).
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Proof. The inequalities |β − α1| < |β − αi| imply that α1 is not equal to any other αi, that
is, α1 is a simple root. Since the Galois group of f acts transitively on the roots, all the
other roots must also be simple; that is, f has d distinct roots. Let

L = K(β) L′ = K(β, α1, . . . , αd)

Then L′/L is Galois, since it is the splitting field of f over L. For σ ∈ Gal(L′/L), we have
σβ = β, hence

|β − σα1| = |σ(β − α1)| = |β − α1| < |β − αi|

That is, σα1 is not equal to any of α2, . . . , αd. Since the Galois group acts transitively on the
roots, we must ahve σα1 = α1, which is to say, α1 is in the fixed field of Gal(L′/L), which is
precisely L = K(β).

Definition 3.17.55. Let K be a complete nonarchimedean discretely valued field. We define
a norm on OK [x] by ∥∥∥∥∥∑

i

aix
i

∥∥∥∥∥ = max
i
|ai|

This naturally induces a metric via

d(f, g) = ‖f − g‖

Proposition 3.17.56 (Corollary of Krasner’s lemma). Let K be a complete nonarchimedean
discretely valued field. Let f ∈ OK [x] be monic irreducible. Let α ∈ Kalg be a root of f .
There exists ε > 0 such that for all g ∈ OK [x] with ‖g−f‖ < ε, g is irreducible and separable,
and K(α) = K(β) for some root β of g.

That is to say, in a sufficiently small neighborhood of a monic irreducible polynomial
f ∈ OK [x] under the norm defined above, every polynomial is separable and irreducible and
defines the same extensions of K.

Proposition 3.17.57. Let K be a p-adic field. For any n ∈ Z≥1, K has only finitely many
extensions of degree n (up to K-isomorphism).

Proof. Since charK = 0, any finite extension is separable, and any separable extension of K
factors as a tower of a totally ramified extension and an unramified extension.

By the equivalence of unramified extensions of K with extensions of the residue field
kK ∼= Fp, there is a unique (up to isomorphism) unramified extension of K of a given degree.
So this reduces to showing there are finitely many totally ramified extensions of a given
degree.

We know that totally ramified extensions are generated by roots of Eisenstein polynomi-
als. Since K is local, OK ,O×K are compact. An Eisenstein polynomial has the form

f = xn + an−1x
n−1 + · · ·+ a1x+ a0 an−1, . . . , a1 ∈ πKOK , a0 ∈ πKO×K

Thus the Eisenstein polynomials over OK are parametrized by the set S = (πKOK)n−2 ×
πKO×K , which is a compact subset of Kn−1. By the previous corollary, for f ∈ S, we can
choose εf > 0 such that for any polynomial in the open neighborhood of f with radius εf ,
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the roots of that polynomial generate the same extension as roots of f . Hence we have an
open cover S by

S =
⋃
f∈S

B(f, εf )

By compactness of S, we can choose a finite subcover. That is, all totally ramified extensions
of K are generated by roots from a fintie list of Eisenstein polynomials. Since each Eisenstein
polynomial has finitely many roots, this says that all the totally ramified extensions of K
are generated by a finite list of elements, hence there are only finitely many totally ramified
extensions of K.

3.18 Results beyond our class

Theorem 3.18.1. Let p ∈ Z be prime and ζ be a primitive pth root of unity. Z[ζ] is a UFD
if and only if p ≤ 19. Equivalently, the class group of Q(ζ) is trivial if and only if p ≤ 19.

Theorem 3.18.2. Let p ∈ Z be prime and ζ be a primitive pth root of unity. Z[ζ] has
infinitely many units for p ≥ 5.

Theorem 3.18.3 (Class number formula). Let K be a number field. For s ∈ C with <(s) >
1, define the Dedekind zeta function of K,

ζK(s) =
∑
a⊂OK

1

N(a)2

(The sum is over all nonzero ideals a.) Note that ζK has analytic continuation to all of C
which is meromorphic and has a simple pol at s = 1. The residue at s = 1 is given by

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2 Reg(K)hK

wK
√
|∆K |

where hK = |Cl(OK)|, wK = |µ(K)|,∆K = disc(OK/Z).
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4 Exercises

4.1 Informal exercises from lectures

4.1.1 Discriminants

Proposition 4.1.1. Let f(x) = x3− x− 1 ∈ Q[x]. Note that f is irreducible by the rational
root test. Let α be a root of f in a splitting field Q(α)/Q. With respect to the basis {1, α, α2}
of Q(α) over Q, the discriminant is

D(1, α, α2) = −NQ(α)
Q (f ′(α)) = −23

(The first equality is given, the content of this is the second equality.) Thus by Proposition
3.2.20, OK = Z[α].

Proof. Note that f ′(α) = 3α2 − 1. Recall that by definition, N(3α2 − 1) is the determinant
of the matrix of 3α2 − 1 as a Q-linear transformation Q(α)→ Q(α). We compute

(3α2 − 1)(1) = 3α2 − 1 =

−1
0
3



(3α2 − 1)(α) = 3α3 − α = 3(α + 1)− α = 2α + 3 =

3
2
0


(3α2 − 1)(α2) = 3α4 − α2 = 3α(α + 1)− α2 = 2α2 + 3α =

0
3
2


Thus, with respect to the basis {1, α, α2}, the matrix of 3α2 − 1 is−1 3 0

0 2 3
3 0 2

 = 23

Thus D(1, α, α2) = −23.

Proposition 4.1.2. Let K be a field and suppose f(x) = xn + ax + b ∈ K[x] is irreducible
and separable over K. Let β be a root of f , and let L = K(β). Then the discriminant of
L/K with respect to the basis {1, β, β2, . . . , βn−1} is

D(1, β, . . . , βn−1) = (−1)
n(n−1)

2 NL
K(f ′(β)) = (−1)

n(n−1)
2

(
nnbn−1 + (−1)n−1(n− 1)n−1an

)
Proof. We may assume that n ≥ 3, since we already computed the discriminant in the case
k = 2 in Example 2.2.11. Note that NL

K(β) = (−1)nb, and since n ≥ 3, TrLK(β) = 0. By
Proposition 3.2.13, it suffices to prove that

NL
K(f ′(β)) = nnbn−1 + (−1)n−1(n− 1)n−1an
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Set
γ = f ′(β) = nαn−1 + a = −(n− 1)a− nbβ−1

so then

β =
−nb

γ + (n− 1)a

Thus K(β) = K(γ), so the minimal polynomial of γ over K also has degree n. We want to
find the minimal polynomial of γ. To that end, let P (x), Q(x) ∈ K[x] so that

f

(
−nb

x+ (n− 1)a

)
=
P (x)

Q(x)

so that when we substitute γ = x, we get

f

(
−nb

γ + (n− 1)a

)
= f(β) = 0 =⇒ P (γ) = 0

Thus P divides the minimal polynomial of γ. If we can show that degP = n, then (a monic
version of) P is the minimal polynomial of γ. Now we compute P (x).

f

(
−nb

x+ (n− 1)a

)
=

(
−nb

x+ (n− 1)a

)n
+

(
−nb

x+ (n− 1)a

)
a+ b

=
(−nb)n − nba(x+ (n− 1)a)n−1 + b(x+ (n− 1)a)n

(x+ (n− 1)a)n

thus
P (x) = (−nb)n − nba(x+ (n− 1)a)n−1 + b(x+ (n− 1)a)n

which has degree n (as a polynomial in x), so P is an irreducible polynomial for which γ is
a root. To make it monic, we multiply by b−1, so b−1P (x) is the minimal polynomial of γ.
Then we can compute the norm of γ by looking at the constant term of of b−1P (x) (up to
sign), so

NL
K(γ) = (−1)n

(
constant term of b−1P (x)

)
= b−1(−1)n

(
(−nb)n − nba((n− 1)a)n−1 + b((n− 1)a)n

)
= nnbn−1 − (−1)nn(n− 1)n−1an + (−1)n(n− 1)nan

= nnbn−1 + (−1)n−1(n− 1)n−1an
(
n− (n− 1)

)
= nnbn−1 + (−1)n−1(n− 1)n−1an

4.1.2 Class groups

Proposition 4.1.3. Let A be a Dedekind domain. Cl(A) is trivial if and only if A is a PID.

54



Proof. If A is a PID, then since Id(A) is generated by principal ideals, P (A) = Id(A) so the
class group is trivial. Conversely, if Cl(A) is trivial, then Id(A) = P (A), so every fractional
ideal of A is principal, so every ideal of A is principal.

Proposition 4.1.4. Let A be a Dedekind domain, and let S ⊂ A be a multiplicative subset.
Then the canonical embedding A→ S−1A, a 7→ a

1
induces an isomorphism between Id(S−1A)

and the subgroup of Id(A) generated by primes of A that do not intersect S.

Proof. This is just a consequence of the ideal correspondence for localization, which says
that primes of S−1A are in bijection with primes of A that do not intersect S. We know
that S−1A is a Dedekind domain, so by unique factorization of ideals on both sides, the
Id(S−1A) and Id(A) are both free abelian on sets of generators which are in bijection, so
they are isomorphic.

4.1.3 Qp

Lemma 4.1.5. Let p be a prime, and let

x =
∑

i≥vp(x)

bip
i ∈ Qp

If x has only finitely many nonzero terms, then x ∈ Q.

Proof. Obvious.

Remark 4.1.6. Let p be a prime and k ∈ Z, k 6= 0. Then in Qp, we have

1

1− pk
= 1 + pk + p2k + · · ·

Proposition 4.1.7. Let p be a prime, and let

x =
∑

i≥vp(x)

bip
i ∈ Qp

Then x ∈ Q if and only if the sequence (bi) is eventually periodic.

Proof. Let x ∈ Q and write x = a
b

with gcd(a, b) = 1. Let n be the highest power of p
dividing 1− b, so we can write pny = 1− b for some y ∈ Z, with gcd(y, p) = 1. Then in Qp,
we have the equality

a

b
=

a

1− (1− b)
=

a

1− pny
= a+ aypn + ay2p2n + · · ·

To get our unique representative of x, we need to reduce the coefficients a, ay, ay2, . . . mod
p. Since a, y ∈ Z, this sequence is eventually periodic, since there are only finitely many
residues mod p. (There are also n−1 terms with coefficient zero between each of these nonzero
coefficient, but these do not affect the periodicity.) Thus the sequence of (bi) corresponding
to x is eventually periodic.
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For the converse, suppose x =
∑
bip

i ∈ Qp with (bi) eventually periodic. Write x = y+ z
where z is the periodic tail, and y has only finitely many nonzero terms. By Lemma 4.1.5,
y ∈ Q, so x ∈ Q ⇐⇒ z ∈ Q. So we have reduced to showing that z is rational. Let
z =

∑
aip

i, and we know that ai+k = ai for some k and all i. We can rearrange the
terms of the series freely since it converges absolutely, so we gather the terms with matching
coefficients.

z = a−mp
−m + a−m+1p

−m + · · ·+ a−mp
−m+k + a−m+1p

−m+k+1 + · · ·

= a−m

(
p−m + p−m+k + p−m+2k + · · ·

)
+ a−m+1

(
p−m+1 + p−m+1+k + p−m+1+2k + · · ·

)
...

+ a−m+k−1

(
p−m+k−1 + p−m+2k−1 + p−m+3k−1 + · · ·

)
Then we factor p−m+k−j out of the power series in p next to each a−m+j, and get

z =
k−1∑
j=0

a−m+jp
−m+j

(
1 + pk + p2k + · · ·

)
=

k−1∑
j=0

a−m+jp
−m+j

(
1

1− pk

)
This is now a finite sum of rational numbers, hence z ∈ Q.

4.2 Homework set 1

Proposition 4.2.1. Let K/Q be a number field, and let NK
Q : K× → Q× be the norm map.

Then

1. NK
Q maps O×K to {±1}.

2. Conversely, if a ∈ OK satisfies NK
Q (a) = ±1, then a ∈ O×K.

Proof. Let a ∈ O×K , with inverse a−1 ∈ O×K . Then

1 = NK
Q (1) = NK

Q (aa−1) = NK
Q (a)NK

Q (a−1)

Since we know that NK
Q maps OK to Z (Corollary 2.21 of Milne [?]), this says that NK

Q (a)
is a unit in Z, hence NK

Q (a) = ±1. For the converse, we know that a−1 exists in K×, we just
need to show a−1 ∈ O×K . Suppose NK

Q (a) = ±1, so the minimal polynomial of a in Z[x] is

an + bn−1a
n−1 + . . .+ b1a+ (±1) = 0

We multiply this equation by a−n, and obtain

1 + bn−1a
−1 + . . .+ b1

(
a−1
)n−1

+ (±1) a−n = 0

Up to sign, this is a monic polynomial in Z[x], so a−1 ∈ O×K .
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For the next proposition, recall that the ring of integers of a quadratic extension

K = Q
(√
−D

)
is Z[
√
−D] if −D ≡ 2, 3 mod 4, and Z

[
1+
√
−D

2

]
if −D ≡ 1 mod 4.

Proposition 4.2.2. Let K = Q(
√
−D) where D ≥ 1 is a square free integer. Then

1. O×K = {±1} if D 6= 1, D 6= 3.

2. O×K = {±1,±i} if D = 1.

3. O×K =
(
±1,±1+

√
−3

2
, 1− 1+

√
−3

2
,−1 + 1+

√
−3

2

)
if D = 3.

Proof. When −D ≡ 2, 3 mod 4, the norm map is given by

NK
Q

(
a+ b

√
−D

)
=
(
a+ b

√
−D

)(
a− b

√
−D

)
= a2 +Db2

When −D ≡ 1 mod 4, the norm map is given by

NK
Q

(
a+ b

1 +
√
−D

2

)
=

(
a+ b

1 +
√
−D

2

)(
a+ b

1−
√
−D

2

)
= a2 + ab+ b2

(
1 +D

4

)
By Proposition 4.2.1, a ∈ OK is a unit if and only if NK

Q (a) = ±1.
First, we consider the case D = 1, so OK = Z[i]. The norm of a + bi ∈ Z[i] is a2 + b2,

which is ±1 only if one of a, b is zero and the other is ±1 (since a, b ∈ Z). Thus units in Z[i]
are ±1,±i.

Now consider D = 3, so OK = Z
[

1+
√
−3

2

]
, and the norm of a+ b

(
1+
√
−3

2

)
is a2 + ab+ b2,

so we analyze integral solutions to this. If one of a, b is zero, the other must be ±1, and one
checks that (±1, 0), (0,±1) are solutions. If one of a, b is ±1, say a = ±1, then b satisfies
one of the four equations

b(b± 1) = −1± 1

Two of these have no solutions, and the other two give the solutions (1,−1), (−1, 1). The
six solutions mentioned give rise to the listed units. We claim there are no other solutions.

Suppose (a, b) is a solution not already listed, with |a|, |b| ≥ 2. Note that a, b must have
opposite signs. Taking absolute values, we obtain

1 = | ± 1| = |a2 + ab+ b2| ≥ |a2|+ |b2| − |ab|

Without loss of generality, suppose |a| ≤ |b|. Note that a 6= 0 implies |a| ≥ 2, so

|ab| ≤ |b2| =⇒ |b2| − |ab| ≥ 0 =⇒ |a2|+ |b2| − |ab| ≥ 2

Combining our two strings of inequalities, we obtain 1 ≥ 2, which is false, so no such solution
exists.

Now we consider more generally D 6= 1, 3. If −D ≡ 2, 3 mod 4, units are a + b
√
−D

so that a2 + Db2 = 1. Since D > 1, we must have b = 0, and then the only solutions are

a = ±1. If −D ≡ 1 mod 4, units are a+b
(

1+
√
−D

2

)
satisfying a2 +ab+b2

(
1+D

4

)
= ±1. Since

D 6= 3,
∣∣1+D

4

∣∣ > 1, so the same chain of absolute values as in the case D = 3 prohibits any
units with |a|, |b| ≥ 2. Then one may tediously check the possibilities with a, b ∈ {0,±1} to
conclude that only a = ±1, b = 0 are solutions.
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Exercise 3. For each of the following irreducible polynomials, we let α be a root and
K = Q(α). Then we compute OK , disc(K/Q), and factorizations of 2, 3, 5, 7 in OK .

(a) f(x) = x2 + 31

(b) f(x) = x2 + 39

(c) f(x) = x2 − 29

(d) f(x) = x3 + x− 1

Solution. (a) In this case, α =
√
−31 and K = Q(

√
−31). Since −31 ≡ 1 mod 4, the ring

of integers is OK = Z
[

1+
√
−31

2

]
. Let β = 1+

√
−31

2
. We compute the discriminant using the

basis 1, β. Note that β2 = 1
2
(α− 15), so

Tr β =
1

2
Trα− 1

2
Tr 15 = 0− 15 = −15

D(1, β) = det

(
Tr 1 Tr β
Tr β Tr β2

)
= det

(
2 1
1 −15

)
= −31

To factor 2, 3, 5, 7 in OK , we use Kummer’s theorem which says that a factorization of the
minimal polynomial of β mod p gives a factorization of p in OK . The minimal polynomial
of β is x2 − x+ 8.

x2 − x+ 8 ≡ x2 + x = x(x+ 1) mod 2

x2 − x+ 8 ≡ x2 − x+ 2 is irreducible mod 3

x2 − x+ 8 ≡ (x− 2)(x− 4) mod 5

x2 − x+ 8(x− 3)(x− 5) mod 7

Thus

(2)OK = (2, β) (2, β + 1)

(3)OK is prime

(5)OK = (5, β − 2)(5, β − 4)

(7)OK = (7, β − 3)(7, β − 5)

(b) In this case α =
√
−39. Since −39 ≡ 1 mod 4, the ring of integers is OK = Z

[
1+
√
−39

2

]
.

Let β = 1+
√
−39

2
. Note that β2 = 1

2
(α− 19).Using the basis 1, β, the discriminant is

Tr β2 =
1

2
Trα− 1

2
Tr(19) = −19

D(1, β) = det

(
Tr 1 Tr β
Tr β Tr β2

)
= det

(
2 1
1 −19

)
= −39
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To factor 2, 3, 5, 7 in OK , we factor the minimal polynomial of β modulo the prime in
question. The minimal polynomial of β is x2 − x+ 10.

x2 − x+ 10 ≡ x(x+ 1) mod 2

x2 − x+ 10 ≡ (x− 2)2 mod 3

x2 − x+ 10 ≡ x(x− 1) mod 5

x2 − x+ 10 is irreducible mod 7

Thus

2OK = (2, β)(2β + 1)

3OK = (3, β − 2)2

5OK = (5, β)(5, β − 1)

7OK is prime

(c) In this case α =
√

29 and K = Q(
√

29). Since 29 ≡ 2 mod 3, the ring of integers is
Z[
√

29]. Using the basis 1, α, the discriminant is

D(1, α) = det

(
Tr 1 Trα
Trα Trα2

)
= det

(
2 0
0 2(29)

)
= 4(29)

We factor x2 + 29 modulo the primes 2, 3, 5, 7 to calculate their factorizations in OK .

x2 + 29 ≡ (x+ 1)2 mod 2

x2 + 29 ≡ (x+ 1)(x+ 2) mod 3

x2 + 29 ≡ (x− 1)(x− 4) mod 5

x2 + 29 is irreducible mod 7

Thus

2OK = (2, α + 1)2

3OK = (3, α + 1)(3, α + 2)

5OK = (5, α− 1)(5, α− 4)

7OK is prime

(d) Let f(x) = x3 + x− 1 and let α be a root of f , and let K = Q(α). Let N = Z[α] ⊂ OK .
In class we showed that

D(1, α, α2) = [OK : N ]2 disc(OK/Z)

so if D(1, α, α2) is square-free, we can conclude that OK = N . Denote TrKQ by Tr. Since
f is the minimal polynomial of α, we can read off Trα = 0. Using a CAS, the minimal
polynomial of α2 is x3 + 2x2 + x− 1, so Trα2 = −2. Since α3 = 1− α, we have

Tr(1− α) = Tr 1− Trα = 3 Trα4 = Tr(α− α2) = Trα− Trα2 = 2
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D(1, α, α2) = det

 Tr 1 Trα Trα2

Trα Trα2 Trα3

Trα2 Trα3 Trα4

 = det

 3 0 −2
0 −2 3
−2 3 2

 = −31

Since −31 is a square-free integer, we conclude that OK = Z[α]. By the calculation we just
did, disc(K/Q) = −31, since 1, α, α2 is a basis for OK over Z. To factor 2, 3, 5, 7 in Z[α], we
use Kummer’s theorem.

x3 + x− 1 is irreducible mod 2

x3 + x− 1 ≡ (x− 2)(x2 + 2x+ 2) mod 3

x3 + x− 1 is irreducible mod 5

x3 + x− 1 is irreducible mod 7

and note that x2 + 2x+ 2 is irreducible mod 3. Thus 2OK , 5OK , 7OK are prime, and

3OK = (3, α− 2)(3, α2 + 2α + 2)

Remark 4.2.3. We clarify the statement of the next proposition. Let K be a number field
with ring of integers OK , and let p ⊂ OK be a (nonzero, proper) prime ideal. Since OK is a
Dedekind domain, p is maximal, so OK/p is a field. We also know that OK/p is finite.

Proposition 4.2.4 (Exercise 4). Let K be a number field, with ring of integers OK, and
let p ⊂ OK be a prime ideal, and let p = charOK/p. Then there exists α ∈ OK such that
p = (p, α).

Proof. The fact that OK/p has characteristic p says that p ≡ 0 mod p, which is to say, p ∈ p.
Since OK is a Dedekind domain, by Corollary 3.16 of Milne [?], there exists α ∈ p so that
p = (p, α).

Proposition 4.2.5 (Exercise 5). Let p, q be distinct primes in Z, and let n be the order of
q in F×p . Let ζp be a primitive pth root of unity, and K = Q(ζp). Then

(a) q is unramified in K.

(b) If q factors as
qOK = P1 . . .Pr

then r = p−1
n

.

Proof. (a) We computed in class that the discriminant of Q(ζp)/Q is ±pp−2, and we know
that the only primes that ramify are ones dividing the discriminant. Thus p is the only
prime that ramifies, and since q 6= p, q is unramified.

(b) By part (a), we know that qOK factors as P1 . . .Pr with Pi distinct primes of OK .
We computed in class that OK = Z[ζp]. Since K/Q is Galois and [K : Q] = p − 1, by the
fundamental relation, we have efr = fr = p − 1, where f = dimFq Z[ζp]/P1. To finish the
proof, it suffices to show that f = n.

Since OK is a Dedekind domain, P1 is maximal, so Z[ζp]/P1 is a field, and by the
classification of finite fields, it must be Fqf . Since Z[ζp] is generated over Z by ζp, Z[ζp]/P1

is generated over Fq by ζp, so Z[ζp]/P1
∼= Fq(ζp) ∼= Fqf . INCOMPLETE
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Another approach: The minimal polynomial of ζp over Z is φp(x) = 1+x+. . .+xp−1. By a
theorem of Kummer from class, the factorization of qZ[ζp] is determined by the factorization
of φp modulo q, so it suffices to factor 1 + x+ . . .+ xp−1 modulo q. If what we want is true,
then φp should split into p−1

n
irreducible factors. INCOMPLETE

Proposition 4.2.6 (Exercise 6). Let K ⊂ L ⊂M be a tower of number fields, with respective
rings of integers OK ⊂ OL ⊂ OM . Let pK ⊂K be a prime ideal, and let pL ⊂ OL, pM ⊂ OM
be prime ideals such that

pL ∩ OK = pK pM ∩ OK = pK

Then
e(pM/pK) = e(pM/pL)e(pL/pK) f(pM/pK) = f(pM/pL)f(pL/pK)

Proof. Recall that pL∩OKpK is equivalent to saying that pL appears in the (unique) factor-
ization of pKOL, and that e(pL/pK) is, by definition, the power of pL in that factorization.
We use (· · · ) to denote the irrelevant part of the factorization.

pKOL = p
e(pL/pK)
L (· · · )

pKOM = p
e(pM/pK)
M (· · · )

pLOM = p
e(pM/pL)
M (· · · )

Putting these together, we obtain

pKOM = (pKOL)OM
=
(
p
e(pL/pK)
L (· · · )

)
OM

= (pLOM)e(pL/pK)(· · · )

=
(
p
e(pM/pL)
M (· · · )

)e(pL/pK)

(· · · )

= p
e(pM/pL)e(pL/pK)
M (· · · )

Note that in each step, the unwritten parts of the factorization (· · · ) do not include any

factors of pM . Comparing this with the factorization pKOM = p
e(pM/pK)
M (· · · ), by uniqueness

we conclude that the powers of pM are equal, that is,

e(pM/pK) = e(pM/pL)e(pL/pK)

The statement for f is simpler to prove. Since pK ⊂ pL ⊂ pM , we have a tower of fields
OK/pK ⊂ OL/pL ⊂ OM/pM , and then from multiplicativity of field degrees in towers, we
get

f(pM/pK) = [OM/pM : OK/pK ]

= [OM/pM : OL/pL][OL/pL : OK/pK ]

= f(pM/pL)f(pL/pK)
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Proposition 4.2.7 (Exercise 7). Let K = Q(
√

5,
√

7,
√

11). Then

7OK = P2
1P

2
2

for some prime ideals P1,P2 ⊂ OK.

Proof. First, note that K/Q is the splitting field of (x2− 5)(x2− 7)(x2− 11), so it is Galois.
By Galois theory, [K : Q] = 8 1. We can write 7OK = Pe

1 . . .P
e
r, and the fundamental

relation gives efr = 8. Now we just need to show e = f = r = 2. As a first step, consider
the tower Q ⊂ L = Q(

√
7) ⊂ K. From our study of quadratic extensions, we know that 7

ramifies, that is,
7OL = P2

so e(7OL/7Z) = 2, with f = r = 1 here. By Exercise 6 (multiplicativity in towers), this
tower gives a lower bound e(7OK/7Z) ≥ 2. Now consider the tower

Q ⊂M = Q(
√

5,
√

11) = Q(
√

5 +
√

11) ⊂ K

Using a computer algebra system, the minimal polynomial of Q(
√

5+
√

11) is x4−32x2 +36,
which factors into two irreducible quadratics modulo 7.

x4 − 32x2 + 36 ≡ (x2 + 3x+ 6)(x2 + 4x+ 6) mod 7

Thus by a theorem of Kummer, 7OM = P1P2, so

e(7OM/7Z) = 1 r(7OM/7Z) = 2 f(7OM/7Z) = 2

By mutliplicativity in towers, we get lower bounds f(7OK/7Z) ≥ 2 and r(7OK/7Z) ≥ 2.
Now we have e, f, r ≥ 2, and efr = 8, so the only possibility is e = f = r = 2.

Proposition 4.2.8 (Exercise 8). Let A be an integral domain, and K = Frac(A), and L/K
a finite extension. Let B be the integral closure of A in L, and S ⊂ A a multiplicative subset.
Then S−1B is the integral closure of S−1A in L.

Proof. First we show that every element of S−1B is integral over S−1A. Let x = b
s
∈ S−1B.

Since B is integral over A, b satisfies a monic polynomial in A[x], so we have a relation in B
of the form

bn + an−1b
n−1 + . . .+ a0 = 0

Since B is an integral domain, the canonical map B → S−1B is injective, so may view this
as a relation in S−1B. Then we multiply by s−n to obtain(

b

s

)n
+
an−1

s

(
b

s

)n−1

+ . . .+
a0

sn
= 0

1In fact, Gal(K/Q) ∼= (Z/2Z)3. For a general computation, see Proposition 0.18 of http://users.math.
msu.edu/users/ruiterj2/Math/Documents/Spring%202017/Algebra/Homework_4.pdf
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which says that b
s

satisfies a monic polynomial in S−1A, hence b
s

is integral over S−1A. To
finish the proof, we need to show that every integral element of L over S−1A lies in S−1B.
Let α ∈ L be integral over S−1A, so there is a relation in S−1A of the form

αn +

(
an−1

sn−1

)
αn−1 + . . .+

a0

s0

= 0

with ai ∈ A, si ∈ S. Clearing denominators, there exists s ∈ S so that αs is integral over A,
so sα ∈ B, so α ∈ S−1B.

Proposition 4.2.9. Let v : K× → Z be a discrete valuation.

1. If x ∈ K× is an element of finite order, then v(x) = 0. In particular, v(a) = v(−a).

2. If a, b ∈ K× and v(a) > v(b), then v(a+ b) = v(b).

3. Suppose there are a1, . . . , an ∈ K× with

a1 + . . .+ an = 0

Then the minimal value of v(ai) is attained for at least two indices i.

Proof. (1) If xn = 1, then 0 = v(1) = v(xn) = nv(x) so v(x) = 0. Consequently,

v(−a) = v(−1) + v(a) = 0 + v(a) = v(a)

(2) Suppose v(a) > v(b). Then

v(a+ b) ≥ min
(
v(a), v(b)

)
= v(b)

On the other hand,

v(b) = v(a+ b− a) ≥ min
(
v(a+ b), v(−a)

)
= min

(
v(a+ b), v(a)

)
Since v(b) < v(a), this min can’t be v(a), so it is v(a + b). Thus v(b) ≥ v(a + b). Since we
have inequality both ways, v(b) = v(a+ b). (3) Suppose a1 + . . .+ an = 0 with ai ∈ K×. Fix
j so that v(aj) is minimal. Then rearrange the equation to

−aj = a1 + . . .+ âj + . . .+ an

Applying v to this, we obtain

v(−aj) = v(aj) = v
(
a1 + . . .+ âj + . . .+ an

)
≥ min

(
v(a1), . . . , v̂(aj), . . . , v(an)

)
Since j was chosen so that v(aj) is minimal among v(ai), we also get

min
(
v(a1), . . . , v̂(aj), . . . , v(an)

)
≥ v(aj)

Thus we get equality. Thus there is another index k so that v(ak) = v(aj).
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4.3 Homework set 2

Proposition 4.3.1 (Exercise 1). There does not exist an irreducible monic polynomial
f(x) ∈ Z[x] of degree > 1 with discriminant ±1.

Proof. Let n = deg f , and let α1, . . . , αn be the roots of f in Qal. Let K = Q(α1). Since
deg f > 1 and f is irreducible, K 6= Q. By Proposition 2.34 of Milne [?],

disc(f) = D(1, α, . . . , αn−1)

From Remark 2.25 of Milne [?], we have

D(1, α, . . . , αn−1) = [OK : Z[α]]2∆K

Combining these, if disc(f) = ±1, then

[OK : Z[α]]2∆K = ±1

which implies |∆K | = 1, since the other factor is an integer. Since K 6= Q, by the Hermite-
Minkowski theorem, |∆K | 6= 1, so this is a contradiction. Thus disc(f) 6= ±1.

Remark 4.3.2. Let K be any field, and let K(α) be a Galois extension with primitive
element α. Then for σ ∈ Gal(K(α)/K), σα is also a primitive element, that is, K(α) =
K(σα). Viewing σ as an automorphism K(α) → K(α) note that the image is also K(σα),
so it must be that they are equal.

Proposition 4.3.3 (Exercise 3, repeat of Proposition 4.3.3). If K/Q is Galois, then K is
either totally real or totally imaginary.

Proof. Let K be the splitting field of an irreducible polynomial f(x) ∈ Q[x]. If f has no real
roots, then K is totally imaginary. By the previous remark, if any root of f is real, then it
is a primitive element, so all other roots can be written in terms of it and elements of Q, so
all roots are real, and K is totally real.
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